1
|
Shahid S, Sultana T, Sultana S, Hussain B, Irfan M, Al-Ghanim KA, Misned FA, Mahboob S. Histopathological alterations in gills, liver, kidney and muscles of Ictalurus punctatus collected from pollutes areas of River. BRAZ J BIOL 2021; 81:814-821. [DOI: 10.1590/1519-6984.234266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/19/2020] [Indexed: 11/22/2022] Open
Abstract
Abstract Untreated sewage and industrial wastes from Faisalabad city are disposed to River Chenab through Chakbandi Main Drain (CMD). The present project is planned to investigate the effects of this freshwater pollution on the body of fish Ictalurus punctatus. The specimens of this fish species were collected upstream and downstream of the entrance of CMD into River Chenab. Fish gills, liver, kidney and muscles from dorsolateral regions of fish were subjected to histopathology. Farmed fish and fish from upstream areas were used as control. Fish collected from polluted experimental sites showed significant damage in selected organs. Gill tissues showed an abnormality in the form of an uplifting of the primary epithelium, fusion, vacuolation, hypertrophy, and necrosis. While liver tissues subjected to hepatocytes degeneration, necrosis, mitochondrial granular hepatocyte, and sinusoids dilation. Kidney tissues indicated increased bowmen space and constricted glomerulus and degenerated nephrons. Edema, necrosis, and atrophy were observed in muscle tissues of fish from polluted areas. Fish from the upstream area showed fused gill lamellae, inflammatory cell infiltration, hypertrophy and vacuolation in hepatocytes. Kidney tissues indicated the presence of nuclear tubular cells, destructive renal tubules, hemorrhage, and necrosis at tubular epithelium. Intra myofibril spaces were also observed in muscles. Specimens of control fish indicated no variation in gills, liver, kidney, and muscles. The present study revealed a strong correlation between the degree of tissue damage and environmental contamination. Present findings also compel global warnings to protect our water bodies and fish to rescue the human population.
Collapse
Affiliation(s)
- S. Shahid
- Government College University, Pakistan
| | | | | | | | - M. Irfan
- Government College University, Pakistan
| | | | | | - Shahid Mahboob
- Government College University, Pakistan; King Saud University, Saudi Arabia
| |
Collapse
|
2
|
Larvicidal Activity and Histopathological Effect of Averrhoa bilimbi Fruit Extract on Aedes aegypti from Surabaya, Indonesia. J Parasitol Res 2020; 2020:8866373. [PMID: 32802485 PMCID: PMC7416286 DOI: 10.1155/2020/8866373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/02/2022] Open
Abstract
Averrhoa bilimbi has been long thought to have biological activity. The aim of this study was to determine the activity of primary and secondary metabolites from A. bilimbi fruit extract on Aedes aegypti larvae mortality and midgut histopathology. Experiment was performed to third-instar Ae. aegypti larvae collected from Surabaya, which then exposed to A. bilimbi crude fruit extract at various concentration for 24 hours. After exposure, larvae were evaluated of its mortality and fixed in 2.5% neutral buffer formalin before processed and sectioned into histological slides and stained with hematoxylin-eosin (HE). Statistical analysis was performed using Spearman rank correlation to determine histopathological damage on midgut of Ae. aegypti larvae. Phytochemical screening of A. bilimbi crude fruit extract found that it contained saponins, tannins, and terpenoids. Minimum concentration able to induce mortality on Ae. aegypti larvae (LC50) was 977 ppm, while LC90 was at 1380 ppm. Severe alteration of larvae midgut was found after 24 hours exposure to 2000 ppm extract. Features of damage mostly found in larvae midgut were disruption of the microvilli, columnar cell vacuolization, epithelial nucleus crossed midgut lumen, and basal membrane damage. Damage caused by fruit extract in midgut of Ae. aegypti third instar larvae inhibited development of larvae. This study reported first finding of histopathological effect of A. bilimbi fruits extract on Ae. aegypti larvae midgut. Result of study was expected to contribute to better understand extract bioactivity of this plant to be applied as natural larvicide for Ae. aegypti.
Collapse
|
3
|
Ragavendran C, Manigandan V, Kamaraj C, Balasubramani G, Prakash JS, Perumal P, Natarajan D. Larvicidal, Histopathological, Antibacterial Activity of Indigenous Fungus Penicillium sp. Against Aedes aegypti L and Culex quinquefasciatus (Say) (Diptera: Culicidae) and Its Acetylcholinesterase Inhibition and Toxicity Assessment of Zebrafish ( Danio rerio). Front Microbiol 2019; 10:427. [PMID: 30936853 PMCID: PMC6431641 DOI: 10.3389/fmicb.2019.00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
Fungal metabolites are considered to be most efficient tools to overcome the issues related to insecticide resistance and environmental pollution. The present study focus on the evaluation of the mosquito larvicidal efficacy of metabolites of seven indigenous fungal isolates (Penicillium sp. Aspergillus niger, A. flavus, A. parasiticus, Rhizopus sp. Mucor sp. and Aspergillus sp.) on the larvae of Aedes aegypti and Culex quinquefasciatus under the laboratory condition. The preliminary screening of the isolate, Penicillium sp. showed better larvicidal effect when compared to other fungi. The fungus was grown on Potato Dextrose Broth (PDB) in the laboratory (at 25°C) and maintained in the relative humidity (at 76 ± 4% for 15 days). Larvicidal potency of mycelial ethyl acetate extract (MEAE) of Penicillium sp. was performed against 1st to 4th instars larvae of Ae. aegypti and Cx. quinquefasciatus using four different concentrations (100, 200, 300, and 500 μg/ml) that showed better larval mortality values (μg/ml) of LC50 = 6.554, 5.487, 6.874, 6.892, and the LC90 = 11.486, 10.366, 12.879, 13.865 for Ae. aegypti and LC50 = 7.000, 13.943, 18.129, 25.212 and the LC90 = 12.541, 23.761, 30.923, 41.696 for Cx. quinquefasciatus. Exposure of metabolite to larvae resulted in behavior changes i.e., excitation, up and down with aggressive movement, anal papillae biting behavior. Further, the larvae treated with Penicillium sp. metabolite exhibited significant reduction in the levels of acetylcholinesterase. The 4th instar mosquito larvae treated with the 500 μg/ml mycelia extract showed severe histological damages. During the antibacterial analysis of Penicillium sp.- mycelium the maximum growth inhibition zone was recorded in Shigella dysenteriae (31.2 mm) and Klebsiella pneumoniae (31.1 mm) followed by others. In addition, to check the toxicity of Penicillium sp. MEAE against embryos of Zebrafish, a model system, using different concentrations of metabolites (1.0, 0.5, 0.125 mg/ml, 30, 3.0, and 0.5 μg/ml) and life-stage parameters were observed at 124 hpf. Furthermore, the Fourier Transformed Infrared and GCMS spectrum analysis of mycelium reflected several chemical compounds. The outcome of the study clearly shows that Penicillium sp. metabolites could serve as an ideal eco-friendly, single-step and inexpensive source for the control of Ae. aegypti and Cx. quinquefasciatus larvae.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| | - Venkatesan Manigandan
- Biomedical Zebrafish Laboratory, Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Chinnaperumal Kamaraj
- Marine Biotechnology and Ecological Genomics Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| | - Govindasamy Balasubramani
- Marine Biotechnology and Ecological Genomics Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| | - Joy Sebastian Prakash
- Biomedical Zebrafish Laboratory, Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Pachiappan Perumal
- Marine Biotechnology and Ecological Genomics Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| |
Collapse
|