1
|
AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat Commun 2022; 13:2572. [PMID: 35546148 PMCID: PMC9095880 DOI: 10.1038/s41467-022-30149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Recent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation. Then, AIMP2-DX2 competitively blocks the access of Smurf2 (SMAD Ubiquitination Regulatory Factor 2) to KRAS, thus preventing ubiquitin-mediated degradation. Moreover, AIMP2-DX2 levels are positively correlated with KRAS levels in colon and lung cancer cell lines and tissues. We also identified a small molecule that specifically bound to the KRAS-binding region of AIMP2-DX2 and inhibited the interaction between these two factors. Treatment with this compound reduces the cellular levels of KRAS, leading to the suppression of KRAS-dependent cancer cell growth in vitro and in vivo. These results suggest the interface of AIMP2-DX2 and KRAS as a route to control KRAS-driven cancers. Direct targeting of oncogenic KRAS activity is a challenge. Here the authors report that a splice variant of AIMP2, AIMP2-DX2, enhances KRAS stability by blocking ubiquitin-mediated degradation of KRAS via the E3 ligase, Smurf2, and identify a chemical that can hinder AIMP2-DX2 from interacting with KRAS.
Collapse
|
2
|
Safdar M, Zaheer S, Khailany RA, Parvez S, Naveed M, Bhuiyan P, Ozaslan M, Moatasam R, Al-Attar MS, Khan MA, Junejo Y. The Relevance of SNPs at 3'UTR Region of CASP7 and miR-371b-5p Associated Diseases: A Computational Analysis. Cell Biochem Biophys 2020; 78:541-557. [PMID: 32951155 DOI: 10.1007/s12013-020-00941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The process of genetically programmed cell death, or apoptosis, plays a crucialrolein cellular homeostasis and gene expression. Disruption of apoptosis may lead to aberrant immune responses, cancer, and neurodegenerative diseases. Single nucleotide polymorphisms (SNPs) present in various microRNA (miRNA) genes and targets being an alteration of miRNA activity resulting in human diseases. Evidence reported that SNPs increase/decrease the effectiveness of the interaction between miRNAs and their target genes associated with diseases. The primary purpose of this study is not only to identify miRSNPs on the CASP7 gene (caspase-7) and SNPs in miRNA genes targeting 3'UTR but also to evaluate the effect of thesegene variations in apoptosis and their associated diseases. We detected 120 miRNAs binding sites and 27 different SNPs in binding sites of miRNA in 3'UTR of the CASP7 gene by ten different online softwares. Interestingly, miR-371b-5p's binding site on CASP7 has an SNP (rs576198588, G/T) on CASP7 3'UTR, and its genomic sequence has an SNP (rs751339395, G/T) at the same nucleotide with rs576198588. Similarly, two other SNPs (rs774879764, C/G rs750389063, C/T) were identified at the first position binding site of miR-371b-5p. Here, miRSNP (rs576198588) at CASP7 3'UTR and SNP (rs751339395) at miR-371b-5p genomic sequence cross-matches at the same site of binding region. Besides, miR-371b-5p targets many apoptosis-related genes (HIP1, TRIAP1, GSKIP, NIN, DAP, CAAP1, XIAP, TMBIM1, TMBIM4, TNFRSF10A, RAD21, AKT1, BAG1, BAG4) even though it had no apoptosis correlated interaction demonstrated formerly. It assures that CASP7 could have a significant consequence on apoptosis through different pathways. Henceforth, this study was representing and signifying an influential connotation among miR-371b-5p and apoptosis via computational exploration and recommended to have better insight.
Collapse
Affiliation(s)
- Muhammad Safdar
- Department of Breeding and Genetics, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Sana Zaheer
- Department of Biotechnology, Virtual University of Pakistan, Lahore, 60000, Pakistan
| | - Rozhgar A Khailany
- Department of Biology, College of Science, Salahaddin University-Erbil, 44001, Erbil, Iraq
- Department of Biology, Faculty of Education, Tishk International University, 44001, Erbil, Iraq
| | - Sadaf Parvez
- Department of Biology, Virtual University of Pakistan, Lahore, 54000, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Piplu Bhuiyan
- School of Basic Life Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 20029, PR China
| | - Mehmet Ozaslan
- Department of Biology, Division of Molecular Biology and Genetics, Gaziantep University, 27310, Gaziantep, Turkey
| | - Rebaz Moatasam
- Department of Medical Microbiology, Koya University, Koya-Erbil, Iraq
| | - Mustafa S Al-Attar
- Department of Environmental Science, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Musarrat Abbas Khan
- Department of Animal Breeding and Genetics, University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasmeen Junejo
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| |
Collapse
|