1
|
Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16:9654-92. [PMID: 25938965 PMCID: PMC4463611 DOI: 10.3390/ijms16059654] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 02/06/2023] Open
Abstract
Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.
Collapse
|
2
|
Jeon JH, Hong MK, Lee JH, Lee JJ, Park KS, Karim AM, Jo JY, Kim JH, Ko KS, Kang LW, Lee SH. Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum β-lactamase isolated from Acinetobacter baumannii. ACTA ACUST UNITED AC 2014; 70:2924-36. [PMID: 25372683 DOI: 10.1107/s1399004714019543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022]
Abstract
Outbreaks of multidrug-resistant bacterial infections have become more frequent worldwide owing to the emergence of several different classes of β-lactamases. In this study, the molecular, biochemical and structural characteristics of an Acinetobacter-derived cephalosporinase (ADC)-type class C β-lactamase, ADC-68, isolated from the carbapenem-resistant A. baumannii D015 were investigated. The blaADC-68 gene which encodes ADC-68 was confirmed to exist on the chromosome via Southern blot analysis and draft genome sequencing. The catalytic kinetics of β-lactams and their MICs (minimum inhibitory concentrations) for A. baumannii D015 and purified ADC-68 (a carbapenemase obtained from this strain) were assessed: the strain was resistant to penicillins, narrow-spectrum and extended-spectrum cephalosporins, and carbapenems, which were hydrolyzed by ADC-68. The crystal structure of ADC-68 was determined at a resolution of 1.8 Å. The structure of ADC-68 was compared with that of ADC-1 (a non-carbapenemase); differences were found in the central part of the Ω-loop and the C-loop constituting the edge of the R1 and R2 subsites and are close to the catalytic serine residue Ser66. The ADC-68 C-loop was stabilized in the open conformation of the upper R2 subsite and could better accommodate carbapenems with larger R2 side chains. Furthermore, a wide-open conformation of the R2-loop allowed ADC-68 to bind to and hydrolyze extended-spectrum cephalosporins. Therefore, ADC-68 had enhanced catalytic efficiency against these clinically important β-lactams (extended-spectrum cephalosporins and carbapenems). ADC-68 is the first reported enzyme among the chromosomal class C β-lactamases to possess class C extended-spectrum β-lactamase and carbapenemase activities.
Collapse
Affiliation(s)
- Jeong Ho Jeon
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Myoung Ki Hong
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jae Jin Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwang Seung Park
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Asad Mustafa Karim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Jeong Yeon Jo
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Ji Hwan Kim
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Lin Woo Kang
- Institute for Cellular and Structural Biology of Sun Yat-Sen University, Guangzhou, Peoples Republic of China
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin, Gyeonggido 449-728, Republic of Korea
| |
Collapse
|
3
|
Mohamed NM, Raafat D. Phenotypic and Genotypic Detection of Metallo-beta-lactamases in Imipenem-resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Alexandria, Egypt. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jm.2011.750.760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|