2
|
Chibuzor-Onyema IE, Ezeokoli OT, Sulyok M, Notununu I, Petchkongkaew A, Elliott CT, Adeleke RA, Krska R, Ezekiel CN. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res Int 2021; 143:110241. [PMID: 33992353 DOI: 10.1016/j.foodres.2021.110241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.
Collapse
Affiliation(s)
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Iviwe Notununu
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Rasheed A Adeleke
- Unit for Environmental Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
5
|
Okeke CA, Ezekiel CN, Nwangburuka CC, Sulyok M, Ezeamagu CO, Adeleke RA, Dike SK, Krska R. Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production. Front Microbiol 2015; 6:1402. [PMID: 26697001 PMCID: PMC4678208 DOI: 10.3389/fmicb.2015.01402] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial diversity and community structure of two maize varieties (white and yellow) during fermentation/steeping for ogi production, and the influence of spontaneous fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial isolates obtained at 24-96 h intervals were preliminarily identified by conventional microbiological methods while 60 selected isolates were clustered into 39 OTUs consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis. Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white and yellow maize, respectively, while P. claussenii was present only at the climax stage of steeping white maize. In both maize varieties, P. pentosaceus was found at 24-72 h. Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4-483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7-513; citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252-1,586; zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05) reduced across steeping periods. This study reports for the first time: (a) the association of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize, (b) citrinin occurrence in Nigerian maize and ogi, and
Collapse
Affiliation(s)
- Chiamaka A. Okeke
- Department of Biosciences and Biotechnology, Babcock UniversityIlishan Remo, Nigeria
| | - Chibundu N. Ezekiel
- Department of Biosciences and Biotechnology, Babcock UniversityIlishan Remo, Nigeria
| | - Cyril C. Nwangburuka
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council–Institute for Soil, Climate and WaterPretoria, South Africa
- Department of Agriculture, Babcock UniversityIlishan Remo, Nigeria
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences ViennaTulln, Austria
| | - Cajethan O. Ezeamagu
- Department of Biosciences and Biotechnology, Babcock UniversityIlishan Remo, Nigeria
| | - Rasheed A. Adeleke
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council–Institute for Soil, Climate and WaterPretoria, South Africa
- Unit for Environmental Science and Management, North-West University at PotchefstroomPotchefstroom, South Africa
| | - Stanley K. Dike
- Department of Microbiology, Imo State UniversityOwerri, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences ViennaTulln, Austria
| |
Collapse
|
6
|
Zhang Q, Lu Y, Liu X, Bie X, Lv F, Lu Z. Preservative effect of food-based fermentate from Lactobacillus acidophilus NX2-6 on chilled pork patties. J Food Prot 2014; 77:459-65. [PMID: 24674438 DOI: 10.4315/0362-028x.jfp-13-359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The food-based fermentate (FBF) from Lactobacillus acidophilus NX2-6 has a broad-spectrum antibacterial activity but has not previously been reported as a food preservative. Experiments were conducted to assess its application as a preservative in pork patties. The effect of freeze-dried FBF on the microbiological parameters, physicochemical changes, and sensory evaluations of chilled pork patties stored for 15 days at 4°C was investigated. The five treatments evaluated included a control (meat only), nisin (meat plus 0.5% nisin), L.1 (meat plus 2% freeze-dried FBF), L.2 (meat plus 4% freeze-dried FBF), and L.3 (meat plus 8% freeze-dried FBF). The results showed that freeze-dried FBF could significantly (P < 0.05) inhibit aerobic bacteria, coliforms, Pseudomonas spp., and lactic acid bacteria, with the lowest microbial counts observed in L.3. The addition of freeze-dried FBF resulted in concentration-dependent decreases in total volatile basic nitrogen values and pH values but increases in lipid oxidation and color instability. Based on the criteria regarding microbiological and physicochemical parameters, the shelf life was 9 to 12 days for L.1, 12 to 15 days for L.2, and over 15 days for L.3, while the shelf-lives of the control and nisin treatments were 3 to 6 days, indicating that freeze-dried FBF could extend the shelf life by more than 3 days. Although the shelf life of L.1 was shorter than those of L.2 and L.3, the appearance of L.1 was much better than those of L.2 and L.3. Overall, treatment with 4 or 8% freeze-dried FBF could be improved if color and lipid oxidation could be improved by appropriate stabilizers, and a lower concentration (2%) of freeze-dried FBF has great potential as a natural and safe preservative in chilled pork patties.
Collapse
Affiliation(s)
- Qianying Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control of Ministry of Agriculture, Nanjing 210095, People's Republic of China
| | - Yingjian Lu
- Department of Nutrition and Food Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Xiaoxi Liu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control of Ministry of Agriculture, Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control of Ministry of Agriculture, Nanjing 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control of Ministry of Agriculture, Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control of Ministry of Agriculture, Nanjing 210095, People's Republic of China.
| |
Collapse
|