1
|
Ali A, Ferdosi FH, Sarwar M, Anjum S, Mushtaq Z, Liaquat M, Abbas MT, Anees M, Tariq MR, Ashraf MI, Alasmari A, Mondol MSA, Abdi G. Inducing salt stress tolerance in bitter gourd ( Momordica chanrantia) through seed treatment with chitosan. FRONTIERS IN PLANT SCIENCE 2025; 15:1525561. [PMID: 39958583 PMCID: PMC11825758 DOI: 10.3389/fpls.2024.1525561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/30/2024] [Indexed: 02/18/2025]
Abstract
Background Bitter gourd requires well-drained sandy to sandy loam soils for optimum growth, development, and germination, while its growth is retarded in extreme saline conditions. It is very sensitive to salinity stress, which imposes devastating limits on its productivity. Thus, the impact of soil salinization on the economics of bitter gourd yield deserves scientific inquiry. Methods The present study was designed to evaluate the various morphological attributes (mean germination time, germination index, final emergence percentage, measurements of root length, measurement of shoot length, measurement of plant dry biomass, and measurement of plant fresh biomass), physiological attributes (leaf chlorophyll content and electrolyte leakage), biochemical attributes (proline contents, antioxidant enzymes, superoxide dismutase, catalase Q9 , and peroxidase), leaf water relations (leaf osmotic potential, leaf water potential, leaf turgor potential, and leaf relative water content), and ion concentrations (Na+, K+, Ca +, and Cl-) that can be used for the evaluation of salt stress tolerance potential in bitter gourd. The research was conducted in the field area of the Faculty of Agricultural Sciences, University of the Punjab, Lahore. Results In this experiment, bitter gourd seeds were sowed either without treatment or with hydropriming, 0.01%, 0.02%, 0.03%, 0.04%, and 0.05% chitosan, respectively, under 50mM soil salinity under the climatic conditions of Lahore. This research was designed to find the role of chitosan in inducing salt stress tolerance in bitter gourd plants and also find the best chitosan dose that is useful for higher salinity conditions. Different attributes of bitter gourd were recorded. Results revealed that chitosan application at 0.04% is best for enhancing the salt stress tolerance potential of bitter gourd. Different morphological attributes, physiological attributes, water relation attributes, and biochemical parameters were also recorded. It was observed that pre-sowing treatments with an optimized dose of 0.04% chitosan exhibited significant effects on all the bitter gourd plants and improved the germination rate by improving the salt stress tolerance potential of plants under high salinity. Conclusion It can be concluded from the present research that the optimized dose of 0.04% chitosan has also proved effective in the enzymatic activity of bitter gourd by enhancing the salt stress potential under increasing salt stress.
Collapse
Affiliation(s)
- Ahsan Ali
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | | | - Mubeen Sarwar
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | - Sumreen Anjum
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Zain Mushtaq
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | - Mehwish Liaquat
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | | | - Moazzam Anees
- Department of Horticulture, University of the Punjab, Lahore, Pakistan
| | | | - M. Irfan Ashraf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Abdulrahman Alasmari
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Md Sabir Ahmed Mondol
- Department of Agricultural Biochemistry, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
2
|
Bouzroud S, Henkrar F, Fahr M, Smouni A. Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. 3 Biotech 2023; 13:287. [PMID: 37520340 PMCID: PMC10382465 DOI: 10.1007/s13205-023-03643-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/21/2023] [Indexed: 08/01/2023] Open
Abstract
Salinity is one of the most significant environmental factors limiting legumes development and productivity. Salt stress disturbs all developmental stages of legumes and affects their hormonal regulation, photosynthesis and biological nitrogen fixation, causing nutritional imbalance, plant growth inhibition and yield losses. At the molecular level, salt stress exposure involves large number of factors that are implicated in stress perception, transduction, and regulation of salt responsive genes' expression through the intervention of transcription factors. Along with the complex gene network, epigenetic regulation mediated by non-coding RNAs, and DNA methylation events are also involved in legumes' response to salinity. Different alleviation strategies can increase salt tolerance in legume plants. The most promising ones are Plant Growth Promoting Rhizobia, Arbuscular Mycorrhizal Fungi, seed and plant's priming. Genetic manipulation offers an effective approach for improving salt tolerance. In this review, we present a detailed overview of the adverse effect of salt stress on legumes and their molecular responses. We also provide an overview of various ameliorative strategies that have been implemented to mitigate/overcome the harmful effects of salt stress on legumes.
Collapse
Affiliation(s)
- Sarah Bouzroud
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5R/INAU, 10000 Rabat, Morocco
| |
Collapse
|
3
|
Wan W, Liu Q, Zhang C, Li K, Sun Z, Li Y, Li H. Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply. FRONTIERS IN PLANT SCIENCE 2023; 14:1126017. [PMID: 36895871 PMCID: PMC9989181 DOI: 10.3389/fpls.2023.1126017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION In China, alfalfa (Medicago sativa L.) is often grown on marginal land with poor soil fertility and suboptimal climate conditions. Soil salt stress is one of the most limiting factors for alfalfa yield and quality, through its inhibition of nitrogen (N) uptake and N fixation. METHODS To understand if N supply could improve alfalfa yield and quality through increasing N uptake in salt-affected soils, a hydroponic experiment and a soil experiment were conducted. Alfalfa growth and N fixation were evaluated in response to different salt levels and N supply levels. RESULTS AND DISCUSSION The results showed that salt stress not only significantly decreased alfalfa biomass, by 43%-86%, and N content, by 58%-91%, but also reduced N fixation ability and N derived from the atmosphere (%Ndfa) through the inhibition of nodule formation and N fixation efficiency when the salt level was above 100 mmol Na2SO4 L-1. Salt stress also decreased alfalfa crude protein by 31%-37%. However, N supply significantly improved shoot dry weight by 40%-45%, root dry weight by 23%-29%, and shoot N content by 10%-28% for alfalfa grown in salt-affected soil. The N supply was also beneficial for the %Ndfa and N fixation for alfalfa with salt stress, and the increase reached 47% and 60%, respectively. Nitrogen supply offset the negative effects on alfalfa growth and N fixation caused by salt stress, in part through improving plant N nutrition status. Our results suggest that optimal N fertilizer application is essential to alleviate the loss of growth and N fixation in alfalfa in salt-affected soils.
Collapse
|
4
|
Wekesa C, Asudi GO, Okoth P, Reichelt M, Muoma JO, Furch ACU, Oelmüller R. Rhizobia Contribute to Salinity Tolerance in Common Beans ( Phaseolus vulgaris L.). Cells 2022; 11:cells11223628. [PMID: 36429056 PMCID: PMC9688157 DOI: 10.3390/cells11223628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - George O. Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
5
|
Sarwar M, Anjum S, Ali Q, Alam MW, Haider MS, Mehboob W. Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Sci Rep 2021; 11:24504. [PMID: 34969963 PMCID: PMC8718522 DOI: 10.1038/s41598-021-04174-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Cucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L-1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L-1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L-1, and green long and marketer genotypes may be recommended for saline soil.
Collapse
Affiliation(s)
- Mubeen Sarwar
- Department of Horticulture, University of the Punjab, Lahore, Pakistan. .,Department of Horticulture, University of Agriculture, Faisalabad, Sub-Campus Depalpur, Okara, Pakistan.
| | - Sumreen Anjum
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | | | | | - Wajid Mehboob
- Plant Physiology Division, Nuclear Institute of Agriculture Tando Jam, Tando Jam, Pakistan
| |
Collapse
|
6
|
Youseif SH, Abd El-Megeed FH, Abu Zeid AZA, Abd-Elrahman RA, Mohamed AH, Khalifa MA, Saleh SA. Alleviating the deleterious effects of soil salinity and alkalinity on faba bean ( Vicia faba L.) production using Rhizobium/Agrobacterium inoculants. ARCHIVES OF AGRONOMY AND SOIL SCIENCE 2021; 67:577-593. [DOI: 10.1080/03650340.2020.1849626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/07/2020] [Indexed: 09/02/2023]
Affiliation(s)
- Sameh H. Youseif
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Fayrouz H. Abd El-Megeed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Abu Zeid A. Abu Zeid
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Rehab A.M. Abd-Elrahman
- Food Legumes Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Akram H. Mohamed
- Department of Microbial Genetic Resources; National Gene Bank, Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed A. Khalifa
- Maize Research Department; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Saleh A. Saleh
- Agricultural Microbiology Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
7
|
El Moukhtari A, Cabassa-Hourton C, Farissi M, Savouré A. How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? FRONTIERS IN PLANT SCIENCE 2020; 11:1127. [PMID: 32793273 PMCID: PMC7390974 DOI: 10.3389/fpls.2020.01127] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/08/2020] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the major abiotic stresses restricting the use of land for agriculture because it limits the growth and development of most crop plants. Improving productivity under these physiologically stressful conditions is a major scientific challenge because salinity has different effects at different developmental stages in different crops. When supplied exogenously, proline has improved salt stress tolerance in various plant species. Under high-salt conditions, proline application enhances plant growth with increases in seed germination, biomass, photosynthesis, gas exchange, and grain yield. These positive effects are mainly driven by better nutrient acquisition, water uptake, and biological nitrogen fixation. Exogenous proline also alleviates salt stress by improving antioxidant activities and reducing Na+ and Cl- uptake and translocation while enhancing K+ assimilation by plants. However, which of these mechanisms operate at any one time varies according to the proline concentration, how it is applied, the plant species, and the specific stress conditions as well as the developmental stage. To position salt stress tolerance studies in the context of a crop plant growing in the field, here we discuss the beneficial effects of exogenous proline on plants exposed to salt stress through well-known and more recently described examples in more than twenty crop species in order to appreciate both the diversity and commonality of the responses. Proposed mechanisms by which exogenous proline mitigates the detrimental effects of salt stress during crop plant growth are thus highlighted and critically assessed.
Collapse
Affiliation(s)
- Ahmed El Moukhtari
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
| | - Mohamed Farissi
- Laboratory of Biotechnology & Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Ecologie et Sciences de l’Environnement de Paris, IEES, Paris, France
- *Correspondence: Arnould Savouré,
| |
Collapse
|
8
|
Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis 2019. [DOI: 10.1007/s13199-019-00621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Yu Z, Zhang J, Hou M. Time-dependent disturbances of chloride salts on overall redox reaction and luminescence in Vibrio fischeri. CHEMOSPHERE 2018; 199:122-129. [PMID: 29433025 DOI: 10.1016/j.chemosphere.2018.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The redox state of NADH/NADPH balance (nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate) is crucial in cellular homeostasis. Recent studies reported that sodium halide ions (NaX, X = F-, Cl-, Br- and I-) stimulated NAD(P)H in Vibrio fischeri (VF). However, it remained unanswered whether this pattern applied in salts with other cations, e.g., K+, Mg2+ and Ca2+, whose aquatic concentrations were increased by anthropogenic activities and climate change. Currently, VF were incubated with chloride salts, including KCl, MgCl2 and CaCl2, and effects were measured in a time-dependent fashion. Both NADH and NADPH showed stimulation that increased over time, and the greatest maximum stimulation at 24 h was CaCl2 > MgCl2 > KCl. The changes of NADH/NADPH ratios over time in CaCl2, MgCl2 and KCl were descendent, ascendant and stable, respectively. Simultaneously, FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk were also stimulated. The luminescence showed even more significant stimulations than the overall redox reaction. Together with earlier reported effects of NaCl, the chloride salts commonly disturbed the redox state and influenced the adaption of organisms to challenging environments.
Collapse
Affiliation(s)
- Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051 PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin, 541004, PR China.
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|
10
|
Yu Z, Zhang J, Hou M. The time-dependent stimulation of sodium halide salts on redox reactants, energy supply and luminescence in Vibrio fischeri. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:429-435. [PMID: 28858708 DOI: 10.1016/j.jhazmat.2017.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The excess of halide ions (F-, Cl-, Br-, I-) can cause adverse effects. Earlier studies demonstrated time-dependent stimulations of organic salts with halide ions on photobacteria. Therefore, inorganic ones with halide ions (e.g., NaX, X=F-, Cl-, Br-, I-) were assumed to cause similar effects. In the present study, Vibrio fischeri was exposed to NaX. Results showed that the contents of favin mono-nucleotide (FMN), nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) were stimulated by NaX with a time-dependent fashion. The maximum stimulations on FMN at 24h were 172%, 168%, 211% and 298% of the control (p<0.05) in NaF, NaCl, NaBr and NaI, respectively, with an order of NaF≈NaCl<NaBr<NaI. The maximum stimulations on NAD(P)H at 24h followed similar orders. Similar time-dependent stimulatory effects were observed in the FMN:NAD(P)H reaction catalyst (luciferase, in the form of expression levels of lux A and lux B), adenosine triphosphate and the expression levels of its regulating gene adk. The luminescent stimulations were significantly higher than the biochemical ones despite of similar time-dependence and stimulation order among NaX. The overall results showed a common hormetic pattern in sodium halide salts.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Meifang Hou
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
11
|
Optimization of dairy sludge for growth of Rhizobium cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:845264. [PMID: 24089690 PMCID: PMC3782126 DOI: 10.1155/2013/845264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 11/18/2022]
Abstract
In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with different synthetic media (tryptone yeast, Rhizobium minimal medium and yeast extract mannitol). Growth in 60% Dairy sludge was found to be superior to standard media used for Rhizobium. Media were optimized using 60% dairy sludge along with different concentrations of yeast extract (1–7 g/L) and mannitol (7–13 g/L) in terms of optical density at different time intervals, that is, 24, 48 and 72 hours. Maximum growth was observed in 6 g/L of yeast extract and 12 g/L of mannitol at 48-hour incubation period in all strains. The important environmental parameters such as pH were optimized using 60% dairy sludge, 60% dairy sludge +6 g/L yeast extract, and 60% dairy sludge +12 g/L mannitol. The maximum growth of all strains was found at pH 7.0. The present study recommends the use of 60% dairy sludge as a suitable growth medum for inoculant production.
Collapse
|