1
|
de Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, Beguinot F, Billeci M, Fornaro M. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: a meta-analysis of preclinical studies. Implications for the treatment. Mol Psychiatry 2023; 28:2811-2825. [PMID: 37085712 PMCID: PMC10615753 DOI: 10.1038/s41380-023-02065-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Impairment of insulin action and metabolic dysregulation have traditionally been associated with schizophrenia, although the molecular basis of such association remains still elusive. The present meta-analysis aims to assess the impact of insulin action manipulations (i.e., hyperinsulinemia, hypoinsulinemia, systemic or brain insulin resistance) on glutamatergic, dopaminergic, γ-aminobutyric acid (GABA)ergic, and serotonergic pathways in the central nervous system. More than one hundred outcomes, including transcript or protein levels, kinetic parameters, and other components of the neurotransmitter pathways, were collected from cultured cells, animals, or humans, and meta-analyzed by applying a random-effects model and adopting Hedges'g to compare means. Two hundred fifteen studies met the inclusion criteria, of which 180 entered the quantitative synthesis. Significant impairments in key regulators of synaptic plasticity processes were detected as the result of insulin handlings. Specifically, protein levels of N-methyl-D-aspartate receptor (NMDAR) subunits including type 2A (NR2A) (Hedges' g = -0.95, 95%C.I. = -1.50, -0.39; p = 0.001; I2 = 47.46%) and 2B (NR2B) (Hedges'g = -0.69, 95%C.I. = -1.35, -0.02; p = 0.043; I2 = 62.09%), and Postsynaptic density protein 95 (PSD-95) (Hedges'g = -0.91, 95%C.I. = -1.51, -0.32; p = 0.003; I2 = 77.81%) were found reduced in insulin-resistant animal models. Moreover, insulin-resistant animals showed significantly impaired dopamine transporter activity, whereas the dopamine D2 receptor mRNA expression (Hedges'g = 3.259; 95%C.I. = 0.497, 6.020; p = 0.021; I2 = 90.61%) increased under insulin deficiency conditions. Insulin action modulated glutamate and GABA release, as well as several enzymes involved in GABA and serotonin synthesis. These results suggest that brain neurotransmitter systems are susceptible to insulin signaling abnormalities, resembling the discrete psychotic disorders' neurobiology and possibly contributing to the development of neurobiological hallmarks of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele De Prisco
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Martina Billeci
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele Fornaro
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
2
|
Lin L, Lin J, Qiu J, Wei F, Bai X, Ma W, Zeng J, Lin D. Gut microbiota alterations may increase the risk of prescription opioid use, but not vice versa: A two-sample bi-directional Mendelian randomization study. Front Microbiol 2022; 13:994170. [PMID: 36483210 PMCID: PMC9722965 DOI: 10.3389/fmicb.2022.994170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Gut microbiota alterations are strongly associated with prescription opioid use (POU) and multisite chronic pain (MCP). However, whether or not these associations are causal remains unknown. Therefore, we aim to explore the causal relationships between them comprehensively. METHODS A two-sample bi-directional Mendelian randomization was conducted to assess the potential associations between gut microbiota and POU/MCP using summary level Genome-wide association studies (GWASs) that were based on predominantly European ancestry. RESULTS Potential causal effects were identified between seven host genetic-driven traits of gut microbiota on POU, including Adlercreutzia, Allisonella, Dialister, Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and LachnospiraceaeNC2004group at the genus level (p < 0.05) by the Inverse-variance weighted method, with significant causal effects of ChristensenellaceaeR.7group and Allisonella on POU (p < 0.025). A total of five genetically greater abundance of gut microbiota traits were identified to be possibly related to the level of MCP (p < 0.05), including genus ErysipelotrichaceaeUCG003, family Clostridiaceae1, order Gastranaerophilales, order Actinomycetales, and family Actinomycetaceae. In the other direction, no clear evidence was found to support a significant causal relationship between POU and gut microbiota, as well as MCP and gut microbiota. In addition, evidence was also provided for the relationship between triacylglycerols and diacylglycerol elevation, and an increased risk of POU and MCP. No evidence was found across various sensitivity analyses, including reverse causality, pleiotropy, and heterogeneity. CONCLUSION The findings from this study provide robust evidence that gut microbiota alterations may be a risk of POU/MCP, but not vice versa.
Collapse
Affiliation(s)
- Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Lin L, Lin J, Qiu J, Wei F, Bai X, Ma W, Zeng J, Lin D. Gut microbiota alterations may increase the risk of prescription opioid use, but not vice versa: A two-sample bi-directional Mendelian randomization study. Front Microbiol 2022; 13:994170. [PMID: 36483210 DOI: 10.3389/fmicb.2022.994170.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Gut microbiota alterations are strongly associated with prescription opioid use (POU) and multisite chronic pain (MCP). However, whether or not these associations are causal remains unknown. Therefore, we aim to explore the causal relationships between them comprehensively. METHODS A two-sample bi-directional Mendelian randomization was conducted to assess the potential associations between gut microbiota and POU/MCP using summary level Genome-wide association studies (GWASs) that were based on predominantly European ancestry. RESULTS Potential causal effects were identified between seven host genetic-driven traits of gut microbiota on POU, including Adlercreutzia, Allisonella, Dialister, Anaerofilum, Anaerostipes, ChristensenellaceaeR.7group, and LachnospiraceaeNC2004group at the genus level (p < 0.05) by the Inverse-variance weighted method, with significant causal effects of ChristensenellaceaeR.7group and Allisonella on POU (p < 0.025). A total of five genetically greater abundance of gut microbiota traits were identified to be possibly related to the level of MCP (p < 0.05), including genus ErysipelotrichaceaeUCG003, family Clostridiaceae1, order Gastranaerophilales, order Actinomycetales, and family Actinomycetaceae. In the other direction, no clear evidence was found to support a significant causal relationship between POU and gut microbiota, as well as MCP and gut microbiota. In addition, evidence was also provided for the relationship between triacylglycerols and diacylglycerol elevation, and an increased risk of POU and MCP. No evidence was found across various sensitivity analyses, including reverse causality, pleiotropy, and heterogeneity. CONCLUSION The findings from this study provide robust evidence that gut microbiota alterations may be a risk of POU/MCP, but not vice versa.
Collapse
Affiliation(s)
- Liling Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwei Lin
- Big Data Laboratory, Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Wei
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohui Bai
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiying Ma
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daowei Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
The other side of the coin: Positive view on the role of opioids in cancer. Eur J Pharmacol 2022; 923:174888. [PMID: 35367422 DOI: 10.1016/j.ejphar.2022.174888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Opioids have been used for medicinal purposes as an analgesic and recreational purposes as a euphorigenic throughout human history. Cancer patients are often treated with different doses of opioids concurrently with anti-cancer drugs for pain relief without exhibiting excessive adverse effects. The intersection of the biology of pain, opioid therapy, and disease progression represents the crux of the matters and is of potentially great importance in cancer care. For more than 20 years, multiple investigations have focused on the stimulatory effects of opioids on cancer cell growth, while in-depth studies on the inhibitory effects on cancer cell growth development have usually been neglected. This paper reviews the evidence regarding opioid therapies and their anti-cancer effects on various malignancies. Likewise, we have a glimpse into the molecular mechanisms necessary for pinpointing their positive or negative impacts on malignancies to raise awareness and stimulate more excellent dialogue regarding their carcinogenic/anticarcinogenic roles.
Collapse
|
5
|
Flace P, Livrea P, Basile GA, Galletta D, Bizzoca A, Gennarini G, Bertino S, Branca JJV, Gulisano M, Bianconi S, Bramanti A, Anastasi G. The Cerebellar Dopaminergic System. Front Syst Neurosci 2021; 15:650614. [PMID: 34421548 PMCID: PMC8375553 DOI: 10.3389/fnsys.2021.650614] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 12/04/2022] Open
Abstract
In the central nervous system (CNS), dopamine (DA) is involved in motor and cognitive functions. Although the cerebellum is not been considered an elective dopaminergic region, studies attributed to it a critical role in dopamine deficit-related neurological and psychiatric disorders [e.g., Parkinson's disease (PD) and schizophrenia (SCZ)]. Data on the cerebellar dopaminergic neuronal system are still lacking. Nevertheless, biochemical studies detected in the mammalians cerebellum high dopamine levels, while chemical neuroanatomy studies revealed the presence of midbrain dopaminergic afferents to the cerebellum as well as wide distribution of the dopaminergic receptor subtypes (DRD1-DRD5). The present review summarizes the data on the cerebellar dopaminergic system including its involvement in associative and projective circuits. Furthermore, this study also briefly discusses the role of the cerebellar dopaminergic system in some neurologic and psychiatric disorders and suggests its potential involvement as a target in pharmacologic and non-pharmacologic treatments.
Collapse
Affiliation(s)
- Paolo Flace
- Medical School, University of Bari ‘Aldo Moro', Bari, Italy
| | | | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Galletta
- Unit of Psychiatry and Psychology, Federico II University Hospital, Naples, Italy
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simona Bianconi
- Physical, Rehabilitation Medicine and Sport Medicine Unit, University Hospital “G. Martino”, Messina, Italy
| | - Alessia Bramanti
- Scientific Institute for Research, Hospitalization and Health Care IRCCS “Centro Neurolesi Bonino Pulejo”, Messina, Italy
| | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Sildenafil alters biogenic amines and increases oxidative damage in brain regions of insulin-hypoglycemic rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:121-127. [PMID: 31677373 DOI: 10.2478/acph-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 01/19/2023]
Abstract
The aim of the present study was to determine the effect of sildenafil on dopamine, 5-hydroxyindol acetic acid (5-HIAA) and selected biomarkers of oxidative stress in the brain of hypoglycemic rats. The animals were treated intraperitoneally as follows: group 1 (control), saline solution; group 2, insulin (10 U per rat or 50 U kg-1); group 3, insulin + single dose of sildenafil (50 U kg-1 + 50 mg kg-1); group 4, insulin + three doses of sildenafil every 24 hours (50 U kg-1 + 50 mg kg-1). In groups 2, 3 and 4, insulin was administered every 24 hours for 10 days. Blood glucose was measured after the last treatment. On the last day of the treatment, the animals´ brains were extracted to measure the levels of oxidative stress markers [H2O2, Ca2+,Mg2+-ATPase, glutathione and lipid peroxidation (TBARS)], dopamine and 5-HIAA in the cortex, striatum and cerebellum/medulla oblongata by validated methods. The results suggest that administration of insulin in combination with sildenafil induces hypoglycemia and hypotension, enhances oxidative damage and provokes changes in the brain metabolism of biogenic amines. Administration of insulin and sildenafil promotes biometabolic responses in glucose control, namely, it induces hypoglycemia and hypotension. It also enhances oxidative damage and provokes changes in the brain metabolism of biogenic amines.
Collapse
|
7
|
Guzmán DC, Brizuela NO, Herrera MO, Peraza AV, Juárez-Olguín H, Mejía GB. Insulin plus zinc induces a favorable biochemical response effects on oxidative damage and dopamine levels in rat brain. Int J Biol Macromol 2019; 132:230-235. [PMID: 30928372 DOI: 10.1016/j.ijbiomac.2019.03.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/27/2023]
Abstract
The aim was to determine the effect of zinc (Zn) and insulin on oxidative stress and levels of dopamine in brain of rats. Wistar rats were treated either with zinc alone or combined with insulin during 10 days. After the last dose blood glucose was measured. Their brains were extracted to measure H2O2, Ca+2, Mg+2 ATPase, glutathione (GSH), lipid peroxidation (Tbars) and Dopamine. Zn does not possess anti-glycemic effect like Insulin however, it is noticeable that the combination of Insulin plus Zn induces a major glucose reduction (p < 0.0001) than Insulin alone. In cerebellum/medulla oblongata, the groups treated with Insulin and Zn show a significantly increase in dopamine (p < 0.005). Insulin plus Zn reduced GSH level in cortex. Insulin plus Zn reduced level of H2O2 in Striatum and in cerebellum/medulla oblongata. Lipid peroxidation was significantly reduced by the administration of Insulin as in the combination of Insulin and Zn in all regions (p < 0.0001). In cerebellum medulla oblongata, ATPase activity showed an increase only in the group treated with Insulin + Zn. CONCLUSION: These results suggest that the use of insulin plus Zn produce favorable changes on oxidative stress and this as consequence on the levels of dopamine.
Collapse
Affiliation(s)
- David Calderón Guzmán
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Norma Osnaya Brizuela
- Laboratory of Neurosciences, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | | | | | - Hugo Juárez-Olguín
- Laboratory of Pharmacology, INP, Mexico City, Mexico; Department of Pharmacology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico.
| | | |
Collapse
|
8
|
Miękus N, Konieczna L, Kowiański P, Moryś J, Bączek T. HILIC-MS Rat Brain Analysis, A New Approach for the Study of Ischemic Attack. Transl Neurosci 2017; 8:70-75. [PMID: 28828183 PMCID: PMC5558183 DOI: 10.1515/tnsci-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Clinicians often rely on selected small molecular compounds from body fluids for the detection, screening or monitoring of numerous life-threatening diseases. Among others, important monoamines - biogenic amines (BAs) - and their metabolites serve as sensitive biomarkers to study the progression or even early detection of on-going brain pathologies or tumors of neuroendocrine origins. Undertaking the task to optimize a reliable method for the simultaneous analysis of the most relevant BAs in biological matrices is of utmost importance for scientists. Hydrophilic interaction liquid chromatography (HILIC) with mass spectrometry (MS) detection provides a specific and sensitive technique for the separation and assessment of several neurotransmitter concentrations in body fluids (blood, urine, tissues). The present study was focused on the optimization of a straightforward, sensitive and reliable method for the simultaneous analysis of the ten most important BAs and their acidic metabolites from homogenates of rat brain tissues by use of HILIC-MS. Here, we present the optimized experimental workflow in terms of sample preparation, buffer compositions, HILIC and MS settings and data analysis. The presented method is reliable, straightforward and sensitive. Our method permits the unbiased, qualitative and quantitative determination of several BAs and their metabolites simultaneously. The optimized method was applied to the analysis of rat brain tissue samples from healthy hemispheres or those with induced transient ischemic attack (TIA). The undertaken pilot study demonstrated that the proposed approach could be applied to reveal the perturbation in neurotransmitters concentration after TIA in rat brains.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Animal and Human Physiology, University of Gdańsk, Wita Stwosza 59, 80-308Gdańsk, Poland.,Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| | - Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1, 80-211Gdańsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1, 80-211Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| |
Collapse
|
9
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|