1
|
Dominguez-Verano P, Jacobo-Herrera N, Castell-Rodríguez A, Canales-Alvarez O, Canales-Martinez MM, Rodriguez-Monroy MA. Chemical Composition of Mexicali Propolis and Its Effect on Gastric Repair in an Indomethacin-Induced Gastric Injury Murine Model. Antioxidants (Basel) 2025; 14:65. [PMID: 39857399 PMCID: PMC11762497 DOI: 10.3390/antiox14010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 01/27/2025] Open
Abstract
Propolis is a resinous substance produced by bees that has several biomedical properties that could contribute to the repair process of the gastric mucosa, such as antioxidant, anti-inflammatory, healing, and gastroprotective properties. Thus, this study aimed to determine the chemical composition of Mexicali propolis, its antioxidant capacity, and its effect on gastric repair. Three polarity-directed extracts were obtained: the ethanolic extract, the ethyl acetate extract, and the hexane extract. The antioxidant activity, total phenolic content (TPC), and flavone/flavonol content were determined for each extract. The chemical composition was analysed using HPLC-TOF-MS (High-Performance Liquid Chromatography-Time-Of-Flight Mass Spectrometry) and GC-MS (Gas Chromatography-Mass Spectrometry), and a total of 52 compounds were identified. The results revealed that the ethanolic extract had the greatest effect on free radical scavenging and the content of bioactive compounds. On the basis of these results, the effect of the Mexicali ethanolic extract of propolis (MeEEP) on gastric repair was subsequently evaluated. Prior to the evaluation, MeEEP was found to exhibit low oral toxicity, as determined under the Organisation for Economic Co-operation and Development (OECD) 425 guidelines. Gastric injury was induced in male C57BL/6 mice by intragastric administration of indomethacin (10 mg/kg). MeEEP (300 mg/kg) was administered 6 h after the induction of injury using indomethacin and daily thereafter. The mice were sacrificed at 12, 24, and 48 h to assess the effect. As a result, MeEEP enhanced the repair of the gastric lesion by decreasing the percentage of the bleeding area and attenuating the severity of histological damage, as demonstrated by H&E staining. This effect was associated with a reduction in MPO enzyme activity and in the levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6, maintaining controlled inflammation in gastric tissue. Furthermore, the administration of the extract increased SOD enzymatic activity and GSH levels, reducing the degree of oxidative damage in the gastric tissue, as demonstrated by low MDA levels. Finally, after evaluating the effect on apoptosis via immunohistochemistry, MeEEP was shown to reduce the expression of the proapoptotic marker Bax and increase the expression of the antiapoptotic marker Bcl-2. In conclusion, these findings suggest that MeEEP may enhance gastric repair through a cytoprotective mechanism by controlling inflammation exacerbation, reducing oxidative stress, and regulating apoptosis. These mechanisms are primarily attributed to the presence of pinocembrin, tectochrysin, chrysin, apigenin, naringenin, acacetin, genistein, and kaempferol. It is important to highlight that this study provides a preliminary exploration of the reparative effect of Mexican propolis, describing the potential mechanisms of action of the compounds present in Mexicali propolis.
Collapse
Affiliation(s)
- Pilar Dominguez-Verano
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1 Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla de Baz 54090, Mexico;
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica Guillermo Soberón Acevedo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Avenida Vasco de Quiroga 14, Colonia Belisario Domínguez Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Colonia. Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico;
| | - Octavio Canales-Alvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla de Baz 54090, Mexico;
| | | | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES Iztacala, Avenida de los Barrios Número 1, Tlalnepantla de Baz 54090, Mexico;
| |
Collapse
|
2
|
Ngenge Tamfu A, Mfifen Munvera A, Veronica Dediu Botezatu A, Talla E, Ceylan O, Tagatsing Fotsing M, Tanyi Mbafor J, Shaheen F, Mihaela Dinica R. Synthesis of benzoyl esters of β-amyrin and lupeol and evaluation of their antibiofilm and antidiabetic activities. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
3
|
Lipovka Y, Alday E, Hernandez J, Velazquez C. Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2003380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yulia Lipovka
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
4
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Dominguez-Verano P, Martinez-Galero E, Canales-Martinez MM, Rodriguez-Monroy MA. Evaluation of the gastroprotective effects of Chihuahua propolis on indomethacin- induced gastric ulcers in mouse. Biomed Pharmacother 2021; 137:111345. [PMID: 33556873 DOI: 10.1016/j.biopha.2021.111345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
The aim of this work was to evaluate the gastroprotective activity of a Mexican propolis on indomethacin-induced gastric ulcers in a mouse model. The following contents of the ethanolic extract of propolis of Chihuahua (EEPCh) were determined: antioxidant activity (SA50), total phenolic content (TPC), total flavonoid content (TFC), and chemical composition by HPLC-DAD and HPLC-MS, as well as acute toxicity by OECD Guideline 423. Gastric lesions were induced by intragastric indomethacin treatment in male ICR mice. As the positive control, omeprazole was administered, and three doses of EEPCh were evaluated (50, 150 and 300 mg/kg). Gastric mucosal injury, histological changes and mucosal content were evaluated by means of H&E and PAS staining. For homogenized gastric tissues, the following were evaluated: TBARS, MPO, and PGE2 levels; SOD and GPx antioxidant enzymatic activity; and the concentrations of the proinflammatory cytokines, TNF-α, IL-1β and IL-6. EEPCh had a significant SA50 of 41.55 µg/mL. The TPC of EEPCh was 860 mg GAE/g, and its TFC was 49.58 mg QE/g. Different phenolic compounds were identified in the extract and were not toxic. The EEPCh doses decreased mucosal damage and histological injuries, maintained the mucosal content and reduced the TBARS, MPO and concentrations of proinflammatory cytokines in gastric ulcer tissues. The 150 and 300 mg/kg doses increased the SOD activity and maintained the PGE2 content. Only the 300 mg/kg dose increased the GPx activity. The results of this study suggest that EEPCh displays gastroprotective effects by means of its antioxidant activity and anti-inflammatory effects and promotes ulcer protection through the maintenance of mucosal content and PGE2 levels.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México; Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Pilar Dominguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Elizdath Martinez-Galero
- Laboratorio de Toxicología de la Reproducción-Teratogénesis, Departamento de Farmacia, IPN, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, 07738 Ciudad de México, México.
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, 54090 Tlalnepantla, Estado de México, México.
| |
Collapse
|
5
|
Metabolomics Reveals Discrimination of Chinese Propolis from Different Climatic Regions. Foods 2020; 9:foods9040491. [PMID: 32295098 PMCID: PMC7230208 DOI: 10.3390/foods9040491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
The chemical profiles of propolis vary greatly due to the botanic sources and geographic origins, which limit its standardization for modern usages. Here, we proposed a reliable 1H NMR-based metabolomic approach, to discriminate the function and quality of Chinese propolis. A total 63 Chinese propolis samples from different temperate regions were collected and extracted for NMR analysis. Twenty-one compositions in ethanol extracts were assigned based on characteristic chemical shifts and previous literature reports. Significant geographic indicators were identified after the PCA and orthogonal partial least squares discriminant analysis (OPLS-DA) analysis of the obtained 1H NMR data. It was found that the composition discriminations arose from long-term acclimation of the different climates of botanic origin and caused the differences in the biological activities. This study provides us a reasonable instruction for the quality control of Chinese propolis.
Collapse
|
6
|
Mahamat AA, Nyemb JN, Gade IS, Ngenge AT, Talla E, Céline H, Sophie L, Mbafor JT. A New fatty acid and some triterpenoids from propolis of Nkambe (North-West Region, Cameroon) and evaluation of the antiradical scavenging activity of their extracts. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThe aim of this work was to evaluate in vitro antiradical scavenging activity of propolis from Nkambe (North-West, Cameroon). The polyphenol content of the acetone extract was evaluated using the Folin-Ciocalteu reagent as 0.166±0.008 gGAE/100 gRM. Antiradical scavenging activity of hexane and acetone extracts was carried out on DPPH using ascorbic acid as standard. The results showed that the extracts possess antiradical activity with IC50 of 141 μg/mL and 267 μg/mL for acetone and hexane extracts, respectively. The column chromatography separation on silica gel of the hexane fractionyielded compounds 1 to 3. The structures of these compounds were elucidated by NMR and mass spectrometry data as Lupenone (1), a mixture of α and ß-Amyrin (2) and lastly Hexatriacontanoic acid (3) which was described for the first time from propolis.
Collapse
Affiliation(s)
- Abakar Ali Mahamat
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. BOX 454, Ngaoundere, Cameroon
| | - Jean Noël Nyemb
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. BOX 454, Ngaoundere, Cameroon
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, P.O. BOX 812, Yaounde, Cameroon
| | - Isaac Silvère Gade
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, P.O. BOX 812, Yaounde, Cameroon
| | - Alfred Tamfu Ngenge
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, P.O. BOX 812, Yaounde, Cameroon
| | - Emmanuel Talla
- Department of Chemistry, Faculty of Science, University of Ngaoundere, P.O. BOX 454, Ngaoundere, Cameroon
| | - Henoumont Céline
- Department of General, Organic and Biomedical Chemistry, Faculty of Science, University of Mons-Hainaut, NMR and Molecular Imaging Laboratory, B-7000Mons, Belgium
| | - Laurent Sophie
- Department of General, Organic and Biomedical Chemistry, Faculty of Science, University of Mons-Hainaut, NMR and Molecular Imaging Laboratory, B-7000Mons, Belgium
| | - Joseph Tanyi Mbafor
- Department of Organic Chemistry, Faculty of Science, University of Yaounde 1, P.O. BOX 812, Yaounde, Cameroon
| |
Collapse
|
7
|
Tamfu AN, Sawalda M, Fotsing MT, Kouipou RMT, Talla E, Chi GF, Epanda JJE, Mbafor JT, Baig TA, Jabeen A, Shaheen F. A new isoflavonol and other constituents from Cameroonian propolis and evaluation of their anti-inflammatory, antifungal and antioxidant potential. Saudi J Biol Sci 2019; 27:1659-1666. [PMID: 32489308 PMCID: PMC7254033 DOI: 10.1016/j.sjbs.2019.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2',3'-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.
Collapse
Key Words
- 2-Hydroxy-8-prenylbiochanin A
- Antifungal activity
- DCM, dichloromethane
- DPPH radical scavenging
- DPPH, 2,2-diphenyl-1-picrylhydrazylhydrazyl
- EIMS, electronic impact mass spectrometry
- HREIMS, high resolution electronic impact mass spectrometry
- IR, infrared
- MIC, Minimal inhibitory concentration
- MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NMR, Nuclear magnetic resonance
- NO inhibition
- NO, nitric oxide
- Propolis
- ROS inhibition
- ROS, reaction oxygen species
- TLC, Thin layer chromatography
- UV, Ultraviolet
- m.p, melting point
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Organic Chemistry, Faculty of Sciences, University of Yaoundé 1, Cameroon.,H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mathieu Sawalda
- Department of Materials Engineering, School of Chemical Engineering and Mineral Industries/Faculty of Science, University of Ngaoundéré, Cameroon
| | | | | | - Emmanuel Talla
- Department of Materials Engineering, School of Chemical Engineering and Mineral Industries/Faculty of Science, University of Ngaoundéré, Cameroon
| | - Godloves Fru Chi
- Department of Organic Chemistry, Faculty of Sciences, University of Yaoundé 1, Cameroon
| | - Justin Jacquin Epah Epanda
- Department of Materials Engineering, School of Chemical Engineering and Mineral Industries/Faculty of Science, University of Ngaoundéré, Cameroon
| | - Joseph Tanyi Mbafor
- Department of Organic Chemistry, Faculty of Sciences, University of Yaoundé 1, Cameroon
| | - Tariq Ahmad Baig
- Dr. Panjwani Center for Molecular Medicinal & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicinal & Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
8
|
Alqarni AM, Niwasabutra K, Sahlan M, Fearnley H, Fearnley J, Ferro VA, Watson DG. Propolis Exerts an Anti-Inflammatory Effect on PMA-Differentiated THP-1 Cells via Inhibition of Purine Nucleoside Phosphorylase. Metabolites 2019; 9:metabo9040075. [PMID: 30995826 PMCID: PMC6523283 DOI: 10.3390/metabo9040075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Previous research has shown that propolis has immunomodulatory activity. Propolis extracts from different geographic origins were assessed for their anti-inflammatory activities by investigating their ability to alter the production of tumour necrosis factor-α (TNF-α) and the cytokines interleukin-1β (IL-1β), IL-6 and IL-10 in THP-1-derived macrophage cells co-stimulated with lipopolysaccharide (LPS). All the propolis extracts suppressed the TNF-α and IL-6 LPS-stimulated levels. Similar suppression effects were detected for IL-1β, but the release of this cytokine was synergised by propolis samples from Ghana and Indonesia when compared with LPS. Overall, the Cameroonian propolis extract (P-C) was the most active and this was evaluated for its effects on the metabolic profile of unstimulated macrophages or macrophages activated by LPS. The levels of 81 polar metabolites were identified by liquid chromatography (LC) coupled with mass spectrometry (MS) on a ZIC-pHILIC column. LPS altered the energy, amino acid and nucleotide metabolism in THP-1 cells, and interpretation of the metabolic pathways showed that P-C reversed some of the effects of LPS. Overall, the results showed that propolis extracts exert an anti-inflammatory effect by inhibition of pro-inflammatory cytokines and by metabolic reprogramming of LPS activity in macrophage cells, suggesting an immunomodulatory effect.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam 31441, Saudi Arabia.
| | - Kanidta Niwasabutra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Muhamad Sahlan
- Faculty of Engineering, Universitas Indonesia Campus UI, Depok 16424, Indonesia.
| | - Hugo Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - James Fearnley
- Apiceutical Research Centre, 6 Hunter Street, Whitby, North Yorkshire YO21 3DA, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
9
|
Talla E, Tamfu AN, Gade IS, Yanda L, Mbafor JT, Laurent S, Elst LV, Popova M, Bankova V. New mono-ether of glycerol and triterpenes with DPPH radical scavenging activity from Cameroonian propolis. Nat Prod Res 2016; 31:1379-1389. [DOI: 10.1080/14786419.2016.1253077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emmanuel Talla
- Faculty of Science, Department of Chemistry, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Alfred Ngenge Tamfu
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Isaac Sylvère Gade
- Faculty of Science, Department of Chemistry, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Lambert Yanda
- Faculty of Science, Department of Chemistry, University of Ngaoundéré, Ngaoundéré, Cameroon
| | - Joseph Tanyi Mbafor
- Faculty of Science, Department of Organic Chemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Sophie Laurent
- Faculty of Medicine and Pharmacy, Department of General, Organic and Biomedical Chemistry, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| | - Luce Vander Elst
- Faculty of Medicine and Pharmacy, Department of General, Organic and Biomedical Chemistry, University of Mons, NMR and Molecular Imaging Laboratory, Mons, Belgium
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|