1
|
Han W, He W, Yang W, Li J, Yang Z, Lu X, Qin A, Qian Y. The osteogenic potential of human bone callus. Sci Rep 2016; 6:36330. [PMID: 27796345 PMCID: PMC5087090 DOI: 10.1038/srep36330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 10/12/2016] [Indexed: 01/15/2023] Open
Abstract
Bone callus, generated during fracture healing, is commonly discarded during surgical procedures. The aim of this study was to investigate the osteogenic potential of bone callus and its possible use as autograft material for patients needing bone grafts. Histology, immunohistochemistry, micro-computed tomography, and biomechanics were performed to examine osteogenic cells, osteoinductive factors, and the osteoconductive structure of bone callus. Alkaline phosphatase-positive osteoblasts, osteoinductive factors (including BMP2, FGF2, TGFB1, and IGF1), and a porous structure were found in bone callus. Early-stage callus (within 3 months after fracture) presented significantly improved osteogenic properties compared to medium- (3–9 months) and late-stage (longer than 9 months) callus. The results revealed that bone callus induced new bone formation in a nude mouse model. Early-stage callus showed better performance to medium- and late-stage callus in the induction of new bone formation at both 8 and 12 weeks. These findings indicated that bone callus, especially early-stage callus, possesses osteogenic potential and can potentially serve as an alternative source of material for bone grafts.
Collapse
Affiliation(s)
- Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - Wei He
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - Jianlei Li
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - Zhifan Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - Xuanyuan Lu
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, PR China
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang 312000, PR China
| |
Collapse
|
2
|
Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater 2016; 42:389-399. [PMID: 27326916 DOI: 10.1016/j.actbio.2016.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. STATEMENT OF SIGNIFICANCE Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Yu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yu-Xiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
3
|
Sun H, Yang HL. Calcium phosphate scaffolds combined with bone morphogenetic proteins or mesenchymal stem cells in bone tissue engineering. Chin Med J (Engl) 2015; 128:1121-7. [PMID: 25881610 PMCID: PMC4832956 DOI: 10.4103/0366-6999.155121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective: The purpose of this study was to review the current status of calcium phosphate (CaP) scaffolds combined with bone morphogenetic proteins (BMPs) or mesenchymal stem cells (MSCs) in the field of bone tissue engineering (BTE). Date Sources: Data cited in this review were obtained primarily from PubMed and Medline in publications from 1979 to 2014, with highly regarded older publications also included. The terms BTE, CaP, BMPs, and MSC were used for the literature search. Study Selection: Reviews focused on relevant aspects and original articles reporting in vitro and/or in vivo results concerning the efficiency of CaP/BMPs or CaP/MSCs composites were retrieved, reviewed, analyzed, and summarized. Results: An ideal BTE product contains three elements: Scaffold, growth factors, and stem cells. CaP-based scaffolds are popular because of their outstanding biocompatibility, bioactivity, and osteoconductivity. However, they lack stiffness and osteoinductivity. To solve this problem, composite scaffolds of CaP with BMPs have been developed. New bone formation by CaP/BMP composites can reach levels similar to those of autografts. CaP scaffolds are compatible with MSCs and CaP/MSC composites exhibit excellent osteogenesis and stiffness. In addition, a CaP/MSC/BMP scaffold can repair bone defects more effectively than an autograft. Conclusions: Novel BTE products possess remarkable osteoconduction and osteoinduction capacities, and exhibit balanced degradation with osteogenesis. Further work should yield safe, viable, and efficient materials for the repair of bone lesions.
Collapse
Affiliation(s)
| | - Hui-Lin Yang
- Department of Orthopedics, First Affiliated Hospital of Soochow University, Jiangsu 215006, China
| |
Collapse
|
4
|
Cuenca-López MD, Andrades JA, Gómez S, Zamora-Navas P, Guerado E, Rubio N, Blanco J, Becerra J. Evaluation of posterolateral lumbar fusion in sheep using mineral scaffolds seeded with cultured bone marrow cells. Int J Mol Sci 2014; 15:23359-76. [PMID: 25522168 PMCID: PMC4284771 DOI: 10.3390/ijms151223359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/25/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by bioluminescence imaging (BLI). Although the cultured MSCs had osteogenic potential, their contribution to spinal fusion when seeded in mineral scaffolds, in the conditions disclosed here, remains uncertain probably due to callus interference with the scaffolds. At present, bone autografts are better than hybrid constructs for posterolateral lumbar fusion, but we should continue to seek better conditions for efficient tissue engineering.
Collapse
Affiliation(s)
- María D Cuenca-López
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Santiago Gómez
- Department of Pathological Anatomy, Faculty of Medicine, University of Cádiz, Cádiz 11003, Spain.
| | - Plácido Zamora-Navas
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Enrique Guerado
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Nuria Rubio
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Jerónimo Blanco
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
5
|
Zhou Z, Liu X, Liu L, Yi Q. Fabrication and Properties of Composite Biomaterials Composed of Poly(L-Lactide) and Bovine Bone. Des Monomers Polym 2012. [DOI: 10.1163/156855508x391130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Zhihua Zhou
- a College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China;,
| | - Xiaoping Liu
- b College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Lihua Liu
- c College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Qingfeng Yi
- d College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| |
Collapse
|
6
|
Gu Y, Chen L, Yang HL, Luo ZP, Tang TS. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion. J Biomed Mater Res A 2011; 97:177-85. [PMID: 21381189 DOI: 10.1002/jbm.a.33018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/30/2010] [Accepted: 11/18/2010] [Indexed: 11/09/2022]
Abstract
The objective of this study was to investigate the efficacy of an injectable calcium phosphate cement/silk fibroin/human recombinant bone morphogenetic protein-2 composite (CPC/SF/rhBMP-2) in an ovine interbody fusion model. Twenty-four mature sheep underwent anterior lumbar interbody fusion at the levels of L1/2, L3/4, and L5/6 with random implantation of CPC/SF, CPC/rhBMP-2, CPC/SF/rhBMP-2, or autogenous iliac bone. After the sheep were sacrificed, the fusion segments were evaluated by manual palpation, CT scan, undestructive biomechanical testing, undecalcified histology, and histomorphology. The fusion rates of CPC/SF/rhBMP-2 were 55.56% and 77.78% at 6 and 12 months, respectively. The fusion was superior to all the biomaterial grafts in stiffness, and reached the same stiffness as the autograft at 12 months. The new bone formation was less than autograft at 6 months, but similar with that at 12 months. However, the ceramic residue volume of CPC/SF/rhBMP-2 was significantly decreased compared with CPC/SF and CPC/rhBMP-2 at both times. The results indicated that CPC/SF/rhBMP-2 composite had excellent osteoconduction and osteoinduction, and balanced degradation and osteogenesis.
Collapse
Affiliation(s)
- Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | | | | | | | | |
Collapse
|
7
|
Mo XT, Yang ZM, Qin TWW. Effects of 20% demineralization on surface physical properties of compact bone scaffold and bone remodeling response at interface after orthotopic implantation. Bone 2009; 45:301-8. [PMID: 19376281 DOI: 10.1016/j.bone.2009.04.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/31/2009] [Accepted: 04/07/2009] [Indexed: 02/05/2023]
Abstract
To enhance osteointegration with preservation of mechanical strength, a surface modification technique using 20% surface demineralization in a controlled manner was applied to custom-built cylindrical bio-derived compact bones (20% surface-demineralized cylindrical compact bio-derived bone scaffold: SDCBS); an undemineralized version was the control. The micro-surface topography of the two types of bone scaffolds was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). 20% demineralization led to significant increases in surface roughness (38.19%, P=0.001) and surface area (15.1%, P=0.030), compared with the control group's, while the decrease in mechanical properties was not statistically significant. Results of orthotopic implantation for 9 months demonstrated that 20% surface demineralization caused significantly rapid and homogeneous bone remodeling at the interface compared to control and led to a significantly rapid osteointegration of SDCBS with the host bone at the early and intermediate stages of osteointegration. The study indicates the potential of SDCBS in repairing clinical bone defects, and would help direct the use of various processes of biomaterials to support defect repairs within osseous sites.
Collapse
Affiliation(s)
- Xiang-tao Mo
- Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, West China School of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | | | | |
Collapse
|
8
|
Abstract
Autologous bone grafting remains the gold standard for bone grafting in clinical practice. Although it has withstood the test of time, it remains associated with multiple comorbidities. The search for an alternative bone graft substitute harnessing bone's osteoconductive, osteoinductive, and osteogenic properties remains a challenge. This article examines the various bone grafting materials currently in use and highlights the current properties and uses of silicon-substituted calcium phosphates as a competitive substitute for high cost materials used today.
Collapse
Affiliation(s)
- Walid Waked
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06520-8071, USA
| | | |
Collapse
|
9
|
Flören M, Kappe T, Reichel H. Effektivitätsanalyse einer klinikinternen allogenen Knochenbank. DER ORTHOPADE 2007; 36:667-72. [PMID: 17522840 DOI: 10.1007/s00132-007-1093-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The EU guidelines 2004/23/EG and 2006/17/EG and their national implementation redefine the framework for allogenic bone banking and transplantation. Against this background an established internal hospital bone bank was analysed concerning threshold of allogenic bone and cost effectiveness in comparison to alternative methods. METHOD Over a 30-month period we registered all arrivals and outgoings of our bone bank and their destination. We further noted all declined donations. We analysed all costs incurred and calculated costs for alternative methods. RESULTS By means of our bone bank we are currently able to meet our own demand for bone substitutes. The maintenance costs are below the prices of alternative methods. Some donations (8%) have to be discarded due to procedural errors. CONCLUSION Maintaining an internal hospital bone bank utilizing fresh-frozen allogenic bone is an efficient and cost-effective method of supplying bone substitutes even under the new EU guidelines if the existing process covers most conditions of the producer authorisation according to section sign 13 AMG. By harmonizing the organizational process it is possible to further improve its effectiveness.
Collapse
Affiliation(s)
- M Flören
- Orthopädische Universitätsklinik, Universitäts- und Rehabilitationsklinikum (RKU), Oberer Eselsberg 45, 89081 Ulm.
| | | | | |
Collapse
|