1
|
Bievel-Radulescu R, Ferrari S, Piaia M, Mandatori D, Pandolfi A, Nubile M, Mastropasqua L, Stanca HT, Ponzin D. Banking of post-SMILE stromal lenticules for additive keratoplasty: A new challenge for eye banks? Int Ophthalmol 2024; 44:355. [PMID: 39182212 PMCID: PMC11345333 DOI: 10.1007/s10792-024-03283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE ReLEx (Refractive Lenticule Extraction) Small Incision Lenticule Extraction (SMILE), the second generation of ReLEx Femtosecond Lenticule Extraction (FLEx), is a minimally invasive, flapless procedure designed to treat refractive errors such as myopia, hyperopia, presbyopia, and astigmatism. This review aims to provide a comprehensive overview of the methods for preserving SMILE-derived lenticules and discusses their potential future applications. METHODS A narrative literature review was conducted using PubMed, Scopus, and Web of Science databases, focusing on articles published up to January 2024 and available in English. The authors also evaluated the reference lists of the collected papers to identify any additional relevant research. RESULTS No standardized protocols currently exist for the storage or clinical application of SMILE-derived lenticules. However, these lenticules present a promising resource for therapeutic uses, particularly in addressing the shortage of donor corneal tissues. Their potential applications include inlay and overlay additive keratoplasty, as well as other ocular surface applications. Further research is needed to establish reliable protocols for their preservation and clinical use. CONCLUSION SMILE-derived lenticules offer significant potential as an alternative to donor corneal tissues. Standardizing their storage and application methods could enhance their use in clinical settings.
Collapse
Affiliation(s)
- Raluca Bievel-Radulescu
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy.
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, 030167, Bucharest, Romania.
| | - Stefano Ferrari
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| | - Moreno Piaia
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| | - Domitilla Mandatori
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Assunta Pandolfi
- Department of Medicine and Aging Science, Ophthalmology Clinic, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Mario Nubile
- StemTeCh Group, Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Leonardo Mastropasqua
- StemTeCh Group, Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Horia Tudor Stanca
- Department of Ophthalmology, "Carol Davila" University of Medicine and Pharmacy, 030167, Bucharest, Romania
| | - Diego Ponzin
- Fondazione Banca Degli Occhi del Veneto, Via Paccagnella, 11, 30174, Venice, Italy
| |
Collapse
|
2
|
Liu M, Song W, Gao W, Jiang L, Pan H, Luo D, Shi L. Impact of Latent Virus Infection in the Cornea on Corneal Healing after Small Incision Lenticule Extraction. Microorganisms 2023; 11:2441. [PMID: 37894101 PMCID: PMC10609374 DOI: 10.3390/microorganisms11102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of the present study is to analyze the impact of cornea virus latent infection on corneal healing after small incision lenticule extraction (SMILE) and predict the positive rate of virus latent infection in corneal stroma. A total of 279 patients who underwent SMILE were included in this study. Fluorescence quantitative PCR was used to detect virus infection in the lenticules, which were taken from the corneal stroma during SMILE. Herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), Epstein-Barr virus (EBV), and cytomegalovirus (CMV) were detected. Postoperative visual acuity, spherical equivalent, intraocular pressure, corneal curvature (Kf and Ks), corneal transparency, and corneal staining were compared between the virus-positive group and the virus-negative group. The number of corneal stromal cells and inflammatory cells, corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), corneal total branch density (CTBD), and corneal nerve fiber width (CNFW) were evaluated using an in vivo confocal microscope. Out of 240 herpes simplex virus (HSV) tested samples, 11 (4.58%) were positive, among which 5 (2.08%) were HSV-1-positive and 6 (2.50%) were HSV-2-positive. None of the 91 CMV- and EBV-tested samples were positive. There was no statistical significance in the postoperative visual acuity, spherical equivalent, intraocular pressure, Kf and Ks, corneal transparency, corneal staining, the number of corneal stromal cells and inflammatory cells, CNFD, CNBD, CNFL, CTBD, and CNFW between the virus-positive and virus-negative groups (p > 0.05). In conclusion, there is a certain proportion of latent HSV infection in the myopia population. Femtosecond lasers are less likely to activate a latent infection of HSV in the cornea. The latent infection of HSV has no significant impact on corneal healing after SMILE.
Collapse
Affiliation(s)
- Ming Liu
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Wenting Song
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei 230001, China; (W.S.); (D.L.)
| | - Wen Gao
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Lili Jiang
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Hongbiao Pan
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| | - Dan Luo
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei 230001, China; (W.S.); (D.L.)
| | - Lei Shi
- Department of Ophthalmology, Anhui Second Provincial People’s Hospital, Dangshan Road 1868, Hefei 230041, China (W.G.); (L.J.); (H.P.)
| |
Collapse
|
3
|
Vautier A, Bourges JL, Gabison E, Chaventre F, Lefevre S, Toubeau D, Arnoult C, Albou-Ganem C, Boyer O, Muraine M. An Efficient Technique for the Long-term Preservation of SMILE Lenticules Using Desiccation. J Refract Surg 2023; 39:491-498. [PMID: 37449510 DOI: 10.3928/1081597x-20230609-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
PURPOSE To evaluate a desiccation protocol for the long-term preservation of human small incision lenticule extraction (SMILE) lenticules and to study their integration in an in vivo rabbit model. METHODS Lenticules were retrieved after SMILE procedures in patients, then desiccated according to a novel protocol. Histologic and electron microscopic analyses were performed. Six rabbit eyes received grafts with an inlay technique, which consisted of inserting a desiccated lenticule into a stromal pocket. Rabbits were killed at different times between 6 and 24 weeks. Rabbit corneas were analyzed using optical coherence tomography, histology, and DAPI staining. RESULTS Microscopic analysis of desiccated lenticules showed a preserved stromal architecture after rehydration. A decellularization of the lenticules after desiccation was observed without any chemical treatment. All rabbit corneas remained clear after grafting human lenticules and no rejection occurred. Optical coherence tomography showed regular lenticular implantation and no decrease in lenticule thickness. Histologic analysis showed no inflammatory infiltration around lenticules and no nuclear material inside lenticules after 6 months. CONCLUSIONS A favorable integration of desiccated human SMILE lenticules in rabbit corneas was observed. The refractive issue of lenticular implantation must be investigated next. Clinical trials are needed to evaluate the use of desiccated SMILE lenticules to treat hyperopia or keratoconus in humans. [J Refract Surg. 2023;39(7):491-498.].
Collapse
|
4
|
Zhang H, Deng Y, Li Z, Tang J. Update of Research Progress on Small Incision Lenticule Extraction (SMILE) Lenticule Reuse. Clin Ophthalmol 2023; 17:1423-1431. [PMID: 37251989 PMCID: PMC10216859 DOI: 10.2147/opth.s409014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
The SMILE lenticule is a complete corneal stroma that is removed from SMILE surgery. Since the increasing number of SMILE surgeries, a large number of SMILE lenticules have been produced, so the reuse and preservation of the stromal lens has become a research hotspot. Due to the rapid development of the preservation and clinical reuse of SMILE lenticules, there have been many related studies in recent years, so we updated it on this basis. We searched PubMed, Web of Science, Embase, Elsevier Science, CNKI, WANFANG Data and other databases for all articles published on the preservation and clinical reuse of SMILE lenticules, screened useful articles, selected relevant articles published in the last five years as the main body for summary, and then reached a conclusion. The existing preservation methods of SMILE lenticule include Moist chamber storage at low temperature, cryopreservation technique dehydrating agent and corneal storage medium, which have their own advantages and disadvantages. Presently, smile lenticules can be used for the treatment of corneal ulcers and perforations, corneal tissue defects, hyperopia, presbyopia and keratectasia, which have been proven to be relatively effective and safe. More research on smile lenticule reuse needs to be carried out to confirm its long-term efficacy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zeshi Li
- West China Clinical Medical College, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Liu G, Li T, Qi B, Gong G, Guo T, Zhou Q, Jhanji V, Zhang BN, Du X. Norepinephrine as an Enhancer Promoting Corneal Penetration of Riboflavin for Transepithelial Corneal Crosslinking. Transl Vis Sci Technol 2023; 12:21. [PMID: 36786745 PMCID: PMC9932548 DOI: 10.1167/tvst.12.2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Purpose Previously, we found norepinephrine (NE) could affect the corneal epithelial integrity, herein we investigated the feasibility and safety of NE serving as a chemical enhancer to promote corneal penetration of riboflavin during transepithelial corneal crosslinking (CXL). Methods The dosage of NE that could promote riboflavin diffusion through the healthy epithelial barrier without inducing epithelial damage in C57BL/6 mice was determined. The safety of NE treatment was confirmed by morphological and histological examinations of the whole cornea. The efficacy of NE in promoting riboflavin penetration was verified by slit lamp and scanning electron microscope (SEM), and corneal biomechanical measurement after CXL. To better fit the clinical scenario, increased NE dosage and shortened riboflavin infiltration time were further evaluated. Results The lowest dosage of NE (1 mg/mL) that facilitated transepithelial riboflavin permeation was 2 µL. No visible corneal structure alteration was observed after NE treatment. SEM indicated dissociation of intercellular junctions among corneal epithelial cells. Homogenous distribution of riboflavin throughout corneal stroma was observed. NE-treated corneas reached comparable biomechanical properties after CXL, including stress-relaxation curve and elastic modulus, with corneas treated with the commercially available transepithelial drug Peschke TE. To better fit the clinical scenario, increasing NE up to 5.5 µL helped riboflavin infiltrate the corneal stroma within 30 minutes. After CXL with 9 mW/cm2 ultraviolet-A (UVA) for 2.5 minutes, the cornea showed significantly enhanced corneal biomechanical properties with undisturbed corneal endothelium. Conclusions NE serves as an effective enhancer in increasing riboflavin diffusion with limited impairment on corneal epithelium and has great potential for clinical application. Translation Relevance NE serves as an effective enhancer for riboflavin penetration and clinical transepithelial CXL.
Collapse
Affiliation(s)
- Guoying Liu
- Medical College, Qingdao University, Qingdao, China,Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Tan Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Ganyu Gong
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Tengyou Guo
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bi Ning Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Xianli Du
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China,School of Ophthalmology, Shandong First Medical University, Qingdao, China
| |
Collapse
|
6
|
Hu X, Wei R, Liu C, Wang Y, Yang D, Sun L, Xia F, Liu S, Li M, Zhou X. Recent advances in small incision lenticule extraction (SMILE)-derived refractive lenticule preservation and clinical reuse. ENGINEERED REGENERATION 2023. [DOI: 10.1016/j.engreg.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
7
|
Preservation of corneal stromal lenticule: review. Cell Tissue Bank 2022; 23:627-639. [DOI: 10.1007/s10561-021-09990-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
8
|
Riau AK, Boey KPY, Binte M Yusoff NZ, Goh TW, Yam GHF, Tang KF, Phua CSH, Chen HJ, Chiew YF, Liu YC, Mehta JS. Experiment-Based Validation of Corneal Lenticule Banking in a Health Authority-Licensed Facility. Tissue Eng Part A 2021; 28:69-83. [PMID: 34128385 DOI: 10.1089/ten.tea.2021.0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With the expected rise in patients undergoing refractive lenticule extraction worldwide, the number of discarded corneal stromal lenticules will increase. Therefore, establishing a lenticule bank to collect, catalog, process, cryopreserve, and distribute the lenticules (for future therapeutic needs) could be advantageous. In this study, we validated the safety of lenticule banking that involved the collection of human lenticules from our eye clinic, transportation of the lenticules to a Singapore Ministry of Health-licensed lenticule bank, processing, and cryopreservation of the lenticules, which, after 3 months or, a longer term, 12 months, were retrieved and transported to our laboratory for implantation in rabbit corneas. The lenticule collection was approved by the SingHealth Centralised Institutional Review Board (CIRB). Both short-term and long-term cryopreserved lenticules, although not as transparent as fresh lenticules due to an altered collagen fibrillar packing, did not show any sign of rejection and cytotoxicity, and did not induce haze or neovascularization for 16 weeks even when antibiotic and steroidal administration were withdrawn after 8 weeks. The lenticular transparency progressively improved and was mostly clear after 4 weeks, the same period when we observed the stabilization of corneal hydration. We showed that the equalization of the collagen fibrillar packing of the lenticules with that of the host corneal stroma contributed to the lenticular haze clearance. Most importantly, no active wound healing and inflammatory reactions were seen after 16 weeks. Our study suggests that long-term lenticule banking is a feasible approach for the storage of stromal lenticules after refractive surgery.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kenny P Y Boey
- Group Laboratory Operations, Cordlife Group Limited, Singapore, Singapore
| | | | - Tze-Wei Goh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Gary H F Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kin F Tang
- Group Laboratory Operations, Cordlife Group Limited, Singapore, Singapore.,Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | | | - Hui-Jun Chen
- Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | - Yoke F Chiew
- Singapore Laboratory, Cordlife Group Limited, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.,Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|