1
|
Yi C, Lai SL, Tsang CM, Artemenko M, Shuen Tang MK, Pang SW, Lo KW, Tsao SW, Wong AST. A three-dimensional spheroid-specific role for Wnt-β-catenin and Eph-ephrin signaling in nasopharyngeal carcinoma cells. J Cell Sci 2021; 134:271163. [PMID: 34338780 DOI: 10.1242/jcs.256461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
One of the greatest unmet needs hindering the successful treatment of nasopharyngeal carcinomas (NPCs) is for representative physiological and cost-effective models. Although Epstein-Barr virus (EBV) infection is consistently present in NPCs, most studies have focused on EBV-negative NPCs. For the first time, we established and analyzed three-dimensional (3D) spheroid models of EBV-positive and EBV-negative NPC cells and compared these to classical two-dimensional (2D) cultures in various aspects of tumor phenotype and drug responses. Compared to 2D monolayers, the 3D spheroids showed significant increases in migration capacity, stemness characteristics, hypoxia and drug resistance. Co-culture with endothelial cells, which mimics essential interactions in the tumor microenvironment, effectively enhanced spheroid dissemination. Furthermore, RNA sequencing revealed significant changes at the transcriptional level in 3D spheroids compared to expression in 2D monolayers. In particular, we identified known (VEGF, AKT and mTOR) and novel (Wnt-β-catenin and Eph-ephrin) cell signaling pathways that are activated in NPC spheroids. Targeting these pathways in 3D spheroids using FDA-approved drugs was effective in monoculture and co-culture. These findings provide the first demonstration of the establishment of EBV-positive and EBV-negative NPC 3D spheroids with features that resemble advanced and metastatic NPCs. Furthermore, we show that NPC spheroids have potential use in identifying new drug targets.
Collapse
Affiliation(s)
- Canhui Yi
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Sook Ling Lai
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margarita Artemenko
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| | - Maggie Kei Shuen Tang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences, University of Hong Kong, Sassoon Road, Hong Kong
| | - Alice Sze Tsai Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
2
|
Tanabe S, Quader S, Cabral H, Ono R. Interplay of EMT and CSC in Cancer and the Potential Therapeutic Strategies. Front Pharmacol 2020; 11:904. [PMID: 32625096 PMCID: PMC7311659 DOI: 10.3389/fphar.2020.00904] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism of epithelial-mesenchymal transition (EMT) consists of the cellular phenotypic transition from epithelial to mesenchymal status. The cells exhibiting EMT exist in cancer stem cell (CSC) population, which is involved in drug resistance. CSCs demonstrating EMT feature remain after cancer treatment, which leads to drug resistance, recurrence, metastasis and malignancy of cancer. In this context, the recent advance of nanotechnology in the medical application has ascended the possibility to target CSCs using nanomedicines. In this review article, we focused on the mechanism of CSCs and EMT, especially into the signaling pathways in EMT, regulation of EMT and CSCs by microRNAs and nanomedicine-based approaches to target CSCs.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
- *Correspondence: Shihori Tanabe,
| | - Sabina Quader
- Innovation Centre of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryuichi Ono
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research (CBSR), National Institute of Health Science (NIHS), Kawasaki, Japan
| |
Collapse
|