1
|
Sahimi M. Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media. Phys Rev E 2024; 109:041001. [PMID: 38755895 DOI: 10.1103/physreve.109.041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 05/18/2024]
Abstract
Rapid evolution of sensor technology, advances in instrumentation, and progress in devising data-acquisition software and hardware are providing vast amounts of data for various complex phenomena that occur in heterogeneous media, ranging from those in atmospheric environment, to large-scale porous formations, and biological systems. The tremendous increase in the speed of scientific computing has also made it possible to emulate diverse multiscale and multiphysics phenomena that contain elements of stochasticity or heterogeneity, and to generate large volumes of numerical data for them. Thus, given a heterogeneous system with annealed or quenched disorder in which a complex phenomenon occurs, how should one analyze and model the system and phenomenon, explain the data, and make predictions for length and time scales much larger than those over which the data were collected? We divide such systems into three distinct classes. (i) Those for which the governing equations for the physical phenomena of interest, as well as data, are known, but solving the equations over large length scales and long times is very difficult. (ii) Those for which data are available, but the governing equations are only partially known, in the sense that they either contain various coefficients that must be evaluated based on the data, or that the number of degrees of freedom of the system is so large that deriving the complete equations is very difficult, if not impossible, as a result of which one must develop the governing equations with reduced dimensionality. (iii) In the third class are systems for which large amounts of data are available, but the governing equations for the phenomena of interest are not known. Several classes of physics-informed and data-driven approaches for analyzing and modeling of the three classes of systems have been emerging, which are based on machine learning, symbolic regression, the Koopman operator, the Mori-Zwanzig projection operator formulation, sparse identification of nonlinear dynamics, data assimilation combined with a neural network, and stochastic optimization and analysis. This perspective describes such methods and the latest developments in this highly important and rapidly expanding area and discusses possible future directions.
Collapse
Affiliation(s)
- Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| |
Collapse
|
2
|
Movahed AA, Noshad H. Introducing a new approach for modeling a given time series based on attributing any random variation to a jump event: jump-jump modeling. Sci Rep 2024; 14:1234. [PMID: 38216694 PMCID: PMC10786893 DOI: 10.1038/s41598-024-51863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/10/2024] [Indexed: 01/14/2024] Open
Abstract
When analyzing the data sampled at discrete times, one encounters successive discontinuities in the trajectory of the sampled time series, even if the underlying path is continuous. On the other hand, the distinction between discontinuities caused by finite sampling of continuous stochastic process and real discontinuities in the sample path is one of the main problems. Clues like these led us to the question: Is it possible to provide a model that treats any random variation in the data set as a jump event, regardless of whether the given time series is classified as diffusion or jump-diffusion processes? To address this question, we wrote a new stochastic dynamical equation, which includes a drift term and a combination of Poisson jump processes with different distributed sizes. In this article, we first introduce this equation in its simplest form including a drift term and a jump process, and show that such a jump-drift equation is able to describe the discrete time evolution of a diffusion process. Afterwards, we extend the modeling by considering more jump processes in the equation, which can be used to model complex systems with various distributed amplitudes. At each step, we also show that all the unknown functions and parameters required for modeling can be obtained non-parametrically from the measured time series.
Collapse
Affiliation(s)
- Ali Asghar Movahed
- Department of Physics and Energy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, P.O. Box 15875-4413, Tehran, Iran
| | - Houshyar Noshad
- Department of Physics and Energy Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, P.O. Box 15875-4413, Tehran, Iran.
| |
Collapse
|
3
|
Wang G, Fu Y. Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3944-3969. [PMID: 36899611 DOI: 10.3934/mbe.2023184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The firing behavior and bifurcation of different types of Izhikevich neurons are analyzed firstly through numerical simulation. Then, a bi-layer neural network driven by random boundary is constructed by means of system simulation, in which each layer is a matrix network composed of 200 × 200 Izhikevich neurons, and the bi-layer neural network is connected by multi-area channels. Finally, the emergence and disappearance of spiral wave in matrix neural network are investigated, and the synchronization property of neural network is discussed. Obtained results show that random boundary can induce spiral waves under appropriate conditions, and it is clear that the emergence and disappearance of spiral wave can be observed only when the matrix neural network is constructed by regular spiking Izhikevich neurons, while it cannot be observed in neural networks constructed by other modes such as fast spiking, chattering and intrinsically bursting. Further research shows that the variation of synchronization factor with coupling strength between adjacent neurons shows an inverse bell-like curve in the form of "inverse stochastic resonance", but the variation of synchronization factor with coupling strength of inter-layer channels is a curve that is approximately monotonically decreasing. More importantly, it is found that lower synchronicity is helpful to develop spatiotemporal patterns. These results enable people to further understand the collective dynamics of neural networks under random conditions.
Collapse
Affiliation(s)
- Guowei Wang
- School of Education, Nanchang Institute of Science and Technology, Nanchang 330108, China
| | - Yan Fu
- School of Mathematics and Computer Science, Yuzhang Normal University, Nanchang 330108, China
| |
Collapse
|
4
|
Mankin R, Rekker A, Paekivi S. Statistical moments of the interspike intervals for a neuron model driven by trichotomous noise. Phys Rev E 2021; 103:062201. [PMID: 34271748 DOI: 10.1103/physreve.103.062201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/14/2021] [Indexed: 11/07/2022]
Abstract
The influence of a colored three-level input noise (trichotomous noise) on the spike generation of a perfect integrate-and-fire (PIF) model of neurons is studied. Using a first-passage-time formulation, exact expressions for the Laplace transform of the output interspike interval (ISI) density and for the statistical moments of the ISIs (such as the coefficient of variation, the skewness, the serial correlation coefficient, and the Fano factor) are derived. To model the anomalous subdiffusion that can arise from, e.g., the trapping properties of dendritic spines, the model is extended by including a random operational time in the form of an inverse strictly increasing Lévy-type subordinator, and exact formulas for ISI statistics are given for this case as well. Particularly, it is shown that at some parameter regimes, the ISI density exhibits a three-modal structure. The results for the extended model show that the ISI serial correlation coefficient and the Fano factor are nonmonotonic with respect to the input current, which indicates that at an intermediate value of the input current the variability of the output spike trains is minimal. Similarities and differences between the behavior of the presented models and the previously investigated PIF models driven by dichotomous noise are also discussed.
Collapse
Affiliation(s)
- Romi Mankin
- School of Natural Sciences and Health, Tallinn University, 29 Narva Road, 10120 Tallinn, Estonia
| | - Astrid Rekker
- School of Natural Sciences and Health, Tallinn University, 29 Narva Road, 10120 Tallinn, Estonia
| | - Sander Paekivi
- School of Natural Sciences and Health, Tallinn University, 29 Narva Road, 10120 Tallinn, Estonia
| |
Collapse
|
5
|
Melanson A, Longtin A. Data-driven inference for stationary jump-diffusion processes with application to membrane voltage fluctuations in pyramidal neurons. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2019; 9:6. [PMID: 31350644 PMCID: PMC6660545 DOI: 10.1186/s13408-019-0074-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The emergent activity of biological systems can often be represented as low-dimensional, Langevin-type stochastic differential equations. In certain systems, however, large and abrupt events occur and violate the assumptions of this approach. We address this situation here by providing a novel method that reconstructs a jump-diffusion stochastic process based solely on the statistics of the original data. Our method assumes that these data are stationary, that diffusive noise is additive, and that jumps are Poisson. We use threshold-crossing of the increments to detect jumps in the time series. This is followed by an iterative scheme that compensates for the presence of diffusive fluctuations that are falsely detected as jumps. Our approach is based on probabilistic calculations associated with these fluctuations and on the use of the Fokker-Planck and the differential Chapman-Kolmogorov equations. After some validation cases, we apply this method to recordings of membrane noise in pyramidal neurons of the electrosensory lateral line lobe of weakly electric fish. These recordings display large, jump-like depolarization events that occur at random times, the biophysics of which is unknown. We find that some pyramidal cells increase their jump rate and noise intensity as the membrane potential approaches spike threshold, while their drift function and jump amplitude distribution remain unchanged. As our method is fully data-driven, it provides a valuable means to further investigate the functional role of these jump-like events without relying on unconstrained biophysical models.
Collapse
Affiliation(s)
- Alexandre Melanson
- Department of Physics, University of Ottawa, Ottawa, Canada.
- Département de physique et d'astronomie, Université de Moncton, Moncton, Canada.
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, Canada
- Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Mankin R, Paekivi S. Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model. Phys Rev E 2018; 97:012125. [PMID: 29448468 DOI: 10.1103/physreve.97.012125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 06/08/2023]
Abstract
The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks, is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival probability (the probability that a spike is not generated) are derived and their dependence on input parameters, especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate values of the memory exponent the survival probability is significantly enhanced in comparison with the cases of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI distribution on input parameters shows that there exists a critical memory exponent α_{c}≈0.402, which marks a dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between the behavior of the model at internal and external noises are also discussed.
Collapse
Affiliation(s)
- Romi Mankin
- School of Natural Sciences and Health, Tallinn University, 29 Narva Road, 10120 Tallinn, Estonia
| | - Sander Paekivi
- School of Natural Sciences and Health, Tallinn University, 29 Narva Road, 10120 Tallinn, Estonia
| |
Collapse
|
7
|
Carfora M, Pirozzi E. Linked Gauss-Diffusion processes for modeling a finite-size neuronal network. Biosystems 2017; 161:15-23. [PMID: 28780051 DOI: 10.1016/j.biosystems.2017.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022]
|
8
|
Flandoli F, Gess B, Scheutzow M. Synchronization by noise for order-preserving random dynamical systems. ANN PROBAB 2017. [DOI: 10.1214/16-aop1088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Anvari M, Tabar MRR, Peinke J, Lehnertz K. Disentangling the stochastic behavior of complex time series. Sci Rep 2016; 6:35435. [PMID: 27759055 PMCID: PMC5069951 DOI: 10.1038/srep35435] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/27/2016] [Indexed: 11/17/2022] Open
Abstract
Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events – or jumps – with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.
Collapse
Affiliation(s)
- Mehrnaz Anvari
- Institute of Physics and ForWind, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - M Reza Rahimi Tabar
- Institute of Physics and ForWind, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany.,Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Joachim Peinke
- Institute of Physics and ForWind, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany.,Helmholtz-Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn, Germany.,Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn, Germany
| |
Collapse
|
10
|
|
11
|
da Silva LA, Vilela RD. Colored noise and memory effects on formal spiking neuron models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062702. [PMID: 26172731 DOI: 10.1103/physreve.91.062702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.
Collapse
Affiliation(s)
- L A da Silva
- Centro de Matemática, Computação e Cognição, UFABC, Santo André-SP, Brazil
| | - R D Vilela
- Centro de Matemática, Computação e Cognição, UFABC, Santo André-SP, Brazil
| |
Collapse
|