1
|
Wang G, Fu Y. Spatiotemporal patterns and collective dynamics of bi-layer coupled Izhikevich neural networks with multi-area channels. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:3944-3969. [PMID: 36899611 DOI: 10.3934/mbe.2023184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The firing behavior and bifurcation of different types of Izhikevich neurons are analyzed firstly through numerical simulation. Then, a bi-layer neural network driven by random boundary is constructed by means of system simulation, in which each layer is a matrix network composed of 200 × 200 Izhikevich neurons, and the bi-layer neural network is connected by multi-area channels. Finally, the emergence and disappearance of spiral wave in matrix neural network are investigated, and the synchronization property of neural network is discussed. Obtained results show that random boundary can induce spiral waves under appropriate conditions, and it is clear that the emergence and disappearance of spiral wave can be observed only when the matrix neural network is constructed by regular spiking Izhikevich neurons, while it cannot be observed in neural networks constructed by other modes such as fast spiking, chattering and intrinsically bursting. Further research shows that the variation of synchronization factor with coupling strength between adjacent neurons shows an inverse bell-like curve in the form of "inverse stochastic resonance", but the variation of synchronization factor with coupling strength of inter-layer channels is a curve that is approximately monotonically decreasing. More importantly, it is found that lower synchronicity is helpful to develop spatiotemporal patterns. These results enable people to further understand the collective dynamics of neural networks under random conditions.
Collapse
Affiliation(s)
- Guowei Wang
- School of Education, Nanchang Institute of Science and Technology, Nanchang 330108, China
| | - Yan Fu
- School of Mathematics and Computer Science, Yuzhang Normal University, Nanchang 330108, China
| |
Collapse
|
2
|
Holzhausen K, Ramlow L, Pu S, Thomas PJ, Lindner B. Mean-return-time phase of a stochastic oscillator provides an approximate renewal description for the associated point process. BIOLOGICAL CYBERNETICS 2022; 116:235-251. [PMID: 35166932 PMCID: PMC9068687 DOI: 10.1007/s00422-022-00920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Stochastic oscillations can be characterized by a corresponding point process; this is a common practice in computational neuroscience, where oscillations of the membrane voltage under the influence of noise are often analyzed in terms of the interspike interval statistics, specifically the distribution and correlation of intervals between subsequent threshold-crossing times. More generally, crossing times and the corresponding interval sequences can be introduced for different kinds of stochastic oscillators that have been used to model variability of rhythmic activity in biological systems. In this paper we show that if we use the so-called mean-return-time (MRT) phase isochrons (introduced by Schwabedal and Pikovsky) to count the cycles of a stochastic oscillator with Markovian dynamics, the interphase interval sequence does not show any linear correlations, i.e., the corresponding sequence of passage times forms approximately a renewal point process. We first outline the general mathematical argument for this finding and illustrate it numerically for three models of increasing complexity: (i) the isotropic Guckenheimer-Schwabedal-Pikovsky oscillator that displays positive interspike interval (ISI) correlations if rotations are counted by passing the spoke of a wheel; (ii) the adaptive leaky integrate-and-fire model with white Gaussian noise that shows negative interspike interval correlations when spikes are counted in the usual way by the passage of a voltage threshold; (iii) a Hodgkin-Huxley model with channel noise (in the diffusion approximation represented by Gaussian noise) that exhibits weak but statistically significant interspike interval correlations, again for spikes counted when passing a voltage threshold. For all these models, linear correlations between intervals vanish when we count rotations by the passage of an MRT isochron. We finally discuss that the removal of interval correlations does not change the long-term variability and its effect on information transmission, especially in the neural context.
Collapse
Affiliation(s)
- Konstantin Holzhausen
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Shusen Pu
- Department of Biomedical Engineering, 5814 Stevenson Center, Vanderbilt University, Nashville, TN 37215 USA
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, 212 Yost Hall, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio USA
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
- Physics Department of Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
3
|
Geng Q, Yan H, Lu X. Optimization of a Deep Learning Algorithm for Security Protection of Big Data from Video Images. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:3394475. [PMID: 35300398 PMCID: PMC8923760 DOI: 10.1155/2022/3394475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of communication technology, digital technology has been widely used in all walks of life. Nevertheless, with the wide dissemination of digital information, there are many security problems. Aiming at preventing privacy disclosure and ensuring the safe storage and sharing of image and video data in the cloud platform, the present work proposes an encryption algorithm against neural cryptography based on deep learning. Primarily, the image saliency detection algorithm is used to identify the significant target of the video image. According to the significant target, the important region and nonimportant region are divided adaptively, and the encrypted two regions are reorganized to obtain the final encrypted image. Then, after demonstrating how attackers conduct attacks to the network under the ciphertext attack mode, an improved encryption algorithm based on selective ciphertext attack is proposed to improve the existing encryption algorithm of the neural network. Besides, a secure encryption algorithm is obtained through detailed analysis and comparison of the security ability of the algorithm. The experimental results show that Bob's decryption error rate will decrease over time. The average classification error rate of Eve increases over time, but when Bob and Alice learn a secure encryption network structure, Eve's classification accuracy is not superior to random prediction. Chosen ciphertext attack-advantageous neural cryptography (CCA-ANC) has an encryption time of 14s and an average speed of 69mb/s, which has obvious advantages over other encryption algorithms. The self-learning secure encryption algorithm proposed here significantly improves the security of the password and ensures data security in the video image.
Collapse
Affiliation(s)
- Qiang Geng
- School of Big Data & Software Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
- Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing 401420, China
| | - Huifeng Yan
- School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xingru Lu
- School of Big Data & Software Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
| |
Collapse
|
4
|
Ramlow L, Lindner B. Interspike interval correlations in neuron models with adaptation and correlated noise. PLoS Comput Biol 2021; 17:e1009261. [PMID: 34449771 PMCID: PMC8428727 DOI: 10.1371/journal.pcbi.1009261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Bostner Ž, Knoll G, Lindner B. Information filtering by coincidence detection of synchronous population output: analytical approaches to the coherence function of a two-stage neural system. BIOLOGICAL CYBERNETICS 2020; 114:403-418. [PMID: 32583370 PMCID: PMC7326833 DOI: 10.1007/s00422-020-00838-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called the partial synchronous output was introduced as a proxy for the coincidence detector cell's output in order to approximate its information transmission. In the first part of the current paper, we compare the information filtering properties (specifically, the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter's coherence function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic weights for connections from the population to the coincidence detector can shape the information transmission of the entire two-stage system.
Collapse
Affiliation(s)
- Žiga Bostner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
| | - Gregory Knoll
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| | - Benjamin Lindner
- Physics Department, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, Haus 2, 10115 Berlin, Germany
| |
Collapse
|
6
|
Hu R, Huang Q, Wang H, He J, Chang S. Monitor-Based Spiking Recurrent Network for the Representation of Complex Dynamic Patterns. Int J Neural Syst 2019; 29:1950006. [DOI: 10.1142/s0129065719500060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neural networks are powerful computation tools for mimicking the human brain to solve realistic problems. Since spiking neural networks are a type of brain-inspired network, called the novel spiking system, Monitor-based Spiking Recurrent network (MbSRN), is derived to learn and represent patterns in this paper. This network provides a computational framework for memorizing the targets using a simple dynamic model that maintains biological plasticity. Based on a recurrent reservoir, the MbSRN presents a mechanism called a ‘monitor’ to track the components of the state space in the training stage online and to self-sustain the complex dynamics in the testing stage. The network firing spikes are optimized to represent the target dynamics according to the accumulation of the membrane potentials of the units. Stability analysis of the monitor conducted by limiting the coefficient penalty in the loss function verifies that our network has good anti-interference performance under neuron loss and noise. The results of solving some realistic tasks show that the MbSRN not only achieves a high goodness-of-fit of the target patterns but also maintains good spiking efficiency and storage capacity.
Collapse
Affiliation(s)
- Ruihan Hu
- School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China
| | - Qijun Huang
- School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China
| | - Hao Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China
| | - Jin He
- School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China
| | - Sheng Chang
- School of Physics and Technology, Wuhan University, Wuhan 430072 Hubei, P. R. China
| |
Collapse
|
7
|
How linear response shaped models of neural circuits and the quest for alternatives. Curr Opin Neurobiol 2017; 46:234-240. [DOI: 10.1016/j.conb.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022]
|
8
|
|