1
|
Li X, Qiao M, Zhou Y, Peng Y, Wen G, Xie C, Zhang Y. Modulating the RPS27A/PSMD12/NF-κB pathway to control immune response in mouse brain ischemia-reperfusion injury. Mol Med 2024; 30:106. [PMID: 39039432 PMCID: PMC11265174 DOI: 10.1186/s10020-024-00870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.
Collapse
Affiliation(s)
- Xiaocheng Li
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University & College of Food and Biological Engineering, Chengdu, 610081, P. R. China
| | - Ming Qiao
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, Xi'an, 710032, P. R. China
| | - Yan Peng
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Gang Wen
- Department of Critical Medicine, The People's Hospital of Renshou County, Meishan, 620500, P. R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital of Chengdu University, Chengdu, 610082, P. R. China
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital of Chengdu University, No. 82, North Section 2, 2nd Ring Road, Chengdu, Sichuan, 610081, P. R. China.
| |
Collapse
|
2
|
Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front Pharmacol 2023; 13:1098851. [PMID: 36686646 PMCID: PMC9852864 DOI: 10.3389/fphar.2022.1098851] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory oral disease that destroys soft and hard periodontal support tissues. Multiple cell death modes including apoptosis, necroptosis, pyroptosis, and ferroptosis play a crucial role in the pathogenicity of inflammatory diseases. This study aimed to identify genes associated with ferroptosis, necroptosis, and pyroptosis in different cells present in the periodontium of periodontitis patients. Methods: Gingival tissues' mRNA sequencing dataset GSE173078 of 12 healthy control and 12 periodontitis patients' and the microarray dataset GSE10334 of 63 healthy controls and 64 periodontitis patients' were obtained from Gene Expression Omnibus (GEO) database. A total of 910 differentially expressed genes (DEGs) obtained in GSE173078 were intersected with necroptosis, pyroptosis, and ferroptosis-related genes to obtain the differential genes associated with cell death (DCDEGs), and the expression levels of 21 differential genes associated with cell death were verified with dataset GSE10334. Results: Bioinformatic analysis revealed 21 differential genes associated with cell death attributed to ferroptosis, pyroptosis, and necroptosis in periodontitis patients compared with healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that 21 differential genes associated with cell death were related to various cellular and immunological pathways including inflammatory responses, necroptosis, and osteoclast differentiation. Additionally, the single-cell RNA (scRNA) sequencing data GSE171213 of 4 healthy controls and 5 periodontitis patients' periodontal tissue was analyzed to obtain cell clustering and cell types attributed to differential genes associated with cell death. We found that among 21 DCDEGs, SLC2A3, FPR2, TREM1, and IL1B were mainly upregulated in neutrophils present in the periodontium of periodontitis patients. Gene overlapping analysis revealed that IL-1B is related to necroptosis and pyroptosis, TREM1 and FPR2 are related to pyroptosis, and SLC2A3 is related to ferroptosis. Finally, we utilized the CIBERSORT algorithm to assess the association between DCDEGs and immune infiltration phenotypes, based on the gene expression profile of GSE10334. The results revealed that the upregulated SLC2A3, FPR2, TREM1, and IL1B were positively correlated with neutrophil infiltration in the periodontium. Discussion: The findings provide upregulated SLC2A3, FPR2, TREM1, and IL1B in neutrophils as a future research direction on the mode and mechanism of cell death in periodontitis and their role in disease pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Li
- *Correspondence: Janak L. Pathak, ; Jiang Li,
| | | |
Collapse
|
3
|
Dong R, Li J, Jiang G, Han N, Zhang Y, Shi X. Novel immune cell infiltration-related biomarkers in atherosclerosis diagnosis. PeerJ 2023; 11:e15341. [PMID: 37151293 PMCID: PMC10158768 DOI: 10.7717/peerj.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Background Immune cell infiltration (ICI) has a close relationship with the progression of atherosclerosis (AS). Therefore, the current study was aimed to explore the role of genes related to ICI and to investigate potential mechanisms in AS. Methods Single-sample gene set enrichment analysis (ssGSEA) was applied to explore immune infiltration in AS and controls. Genes related to immune infitration were mined by weighted gene co-expression network analysis (WGCNA). The function of those genes were analyzed by enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The interactions among those genes were visualized in the protein-protein interaction (PPI) network, followed by identification of hub genes through Cytoscape software. A receiver operating characteristic (ROC) plot was generated to assess the performance of hub genes in AS diagnosis. The expressions of hub genes were measured by reverse transcription quantitative real-time PCR (RT-qPCR) in human leukemia monocyticcell line (THP-1) derived foam cells and macrophages, which mimic AS and control, respectively. Results We observed that the proportions of 27 immune cells were significantly elevated in AS. Subsequent integrative analyses of differential expression and WGCNA identified 99 immune cell-related differentially expressed genes (DEGs) between AS and control. Those DEGs were associated with tryptophan metabolism and extracellular matrix (ECM)-related functions. Moreover, by constructing the PPI network, we found 11 hub immune cell-related genes in AS. The expression pattern and receiver ROC analyses in two independent datasets showed that calsequestrin 2 (CASQ2), nexilin F-Actin binding protein (NEXN), matrix metallopeptidase 12 (MMP12), C-X-C motif chemokine ligand 10 (CXCL10), phospholamban (PLN), heme oxygenase 1 (HMOX1), ryanodine receptor 2 (RYR2), chitinase 3 like 1 (CHI3L1), matrix metallopeptidase 9 (MMP9), actin alpha cardiac muscle 1 (ACTC1) had good performance in distinguishing AS from control samples. Furthermore, those biomarkers were shown to be correlated with angiogenesis and immune checkpoints. In addition, we found 239 miRNAs and 47 transcription factor s (TFs), which may target those biomarkers and regulate their expressions. Finally, we found that RT-qPCR results were consistent with sequencing results.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jikuan Li
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ning Han
- Department of Neurointervention, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yaochao Zhang
- Department of Cardiothoracic Surgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaoming Shi
- Department of Vascular Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Soman A, Asha Nair S. Unfolding the cascade of SERPINA3: Inflammation to cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188760. [PMID: 35843512 DOI: 10.1016/j.bbcan.2022.188760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
SERine Protease INhibitor clade A member 3 (SERPINA3), a member of the SERine-Protease INhibitor (SERPIN) superfamily, principally works as a protease inhibitor in maintaining cellular homeostasis. It is a matricellular acute-phase glycoprotein that appears to be the sole nuclear-binding secretory serpin. Several studies have emerged in recent years demonstrating its link to cancer and disease biology. SERPINA3 seems to have cancer- and compartment-specific biological functions, acting either as a tumour promoter or suppressor in different cancers. However, the localization, mechanism of action and the effectors of SERPINA3 in physiological and pathological scenarios remain obscure. Our review aims to consolidate the current evidence of SERPINA3 in various cancers, highlighting its association with the cancer hallmarks and ratifying its status as an emerging cancer biomarker. The elucidation of SERPINA3-mediated cancer progression and its targeting might shed light on the realm of cancer therapeutics.
Collapse
Affiliation(s)
- Anjana Soman
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram, India
| | - S Asha Nair
- Cancer Research Program 4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
5
|
Yin Y, Xie Z, Chen D, Guo H, Han M, Zhu Z, Bi J. Integrated investigation of DNA methylation, gene expression and immune cell population revealed immune cell infiltration associated with atherosclerotic plaque formation. BMC Med Genomics 2022; 15:108. [PMID: 35534881 PMCID: PMC9082837 DOI: 10.1186/s12920-022-01259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The clinical consequences of atherosclerosis are significant source of morbidity and mortality throughout the world, while the molecular mechanisms of the pathogenesis of atherosclerosis are largely unknown. METHODS In this study, we integrated the DNA methylation and gene expression data in atherosclerotic plaque samples to decipher the underlying association between epigenetic and transcriptional regulation. Immune cell classification was performed on the basis of the expression pattern of detected genes. Finally, we selected ten genes with dysregulated methylation and expression levels for RT-qPCR validation. RESULTS Global DNA methylation profile showed obvious changes between normal aortic and atherosclerotic lesion tissues. We found that differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were highly associated with atherosclerosis by being enriched in atherosclerotic plaque formation-related pathways, including cell adhesion and extracellular matrix organization. Immune cell fraction analysis revealed that a large number of immune cells, especially macrophages, activated mast cells, NK cells, and Tfh cells, were specifically enriched in the plaque. DEGs associated with immune cell fraction change showed that they were mainly related to the level of macrophages, monocytes, resting NK cells, activated CD4 memory T cells, and gamma delta T cells. These genes were highly enriched in multiple pathways of atherosclerotic plaque formation, including blood vessel remodeling, collagen fiber organization, cell adhesion, collagen catalogic process, extractable matrix assembly, and platelet activation. We also validated the expression alteration of ten genes associated with infiltrating immune cells in atherosclerosis. CONCLUSIONS In conclusion, these findings provide new evidence for understanding the mechanisms of atherosclerotic plaque formation, and provide a new and valuable research direction based on immune cell infiltration.
Collapse
Affiliation(s)
- Yihong Yin
- Department of Neural Medicine, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, 230001, China
| | - Zhaohong Xie
- Department of Neural Medicine, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Wuhan, 430075, China
| | - Hao Guo
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co. Ltd, Wuhan, 430075, China
| | - Min Han
- Department of Neural Medicine, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China
| | - Zhengyu Zhu
- Department of Neural Medicine, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China.
| | - Jianzhong Bi
- Department of Neural Medicine, The Second Hospital of Shandong University, Shandong University, No. 247 Beiyuan Street, Jinan, 250033, China.
| |
Collapse
|
6
|
Xiong W, Feng S, Wang H, Qing S, Yang Y, Zhao Y, Zeng Z, Gong J. Identification of candidate genes and pathways in limonin-mediated cardiac repair after myocardial infarction. Biomed Pharmacother 2021; 142:112088. [PMID: 34470729 DOI: 10.1016/j.biopha.2021.112088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) resulting from acute coronary ischemia may cause significant morbidity and mortality, and microRNAs play a vital role in this pathophysiology. Limonin (LIM) is a natural medicine from citrus fruit that protects organs against ischemic diseases, but the candidate genes and pathways associated with cardioprotection are unknown. METHODS MI was induced by ligating the left anterior descending coronary in male Sprague-Dawley rats. LIM was orally administered for 7 days after the induction of MI. Subsequently, the hearts were collected to examine significant changes in microRNAs and mRNAs among the control (CON), MI, and LIM + MI groups. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks were used to identify the biological functions and signaling pathways of differentially expressed mRNAs. Candidate genes were validated by RT-qPCR. RESULTS Compared to the CON group, MI caused significant changes in the expression of 26 microRNAs and 1979 mRNAs. The bioinformatics analysis showed that inflammation, apoptosis, and oxidation were enriched in GO terms, while RAP1, PI3K/AKT, RAS, and cGMP-PKG were enriched in KEGG pathways. In addition, compared to the MI group, LIM induced significant changes in the expression of 4 microRNAs and 173 mRNAs. The differentially expressed mRNAs were related to collagen biosynthesis, the immune response, extrinsic apoptosis, and tight junctions. One microRNA (rno-miR-10a-5p) and 2 mRNAs (IGLON5 and LMX1A) were differentially expressed among the CON, MI, and LIM + MI groups. CONCLUSIONS Our results suggest that the rno-miR-10a-5p-IGLON5/LMX1A axis may be a candidate pathway and promising target through which LIM alleviates MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Shiyan Feng
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Emergency Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Hong Wang
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Emergency Intensive Care Unit, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Song Qing
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Yong Yang
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Yanhua Zhao
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Zhongbo Zeng
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Jian Gong
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Emergency Intensive Care Unit, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China.
| |
Collapse
|