1
|
Nazir A, Puthuveettil AR, Hussain FHN, Hamed KE, Munawar N. Endophytic fungi: nature's solution for antimicrobial resistance and sustainable agriculture. Front Microbiol 2024; 15:1461504. [PMID: 39726956 PMCID: PMC11669676 DOI: 10.3389/fmicb.2024.1461504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The growing threat of antimicrobial resistance (AMR) has underlined the need for a sustained supply of novel antimicrobial agents. Endophyte microorganism that reside within plant tissues as symbionts have been the source of potential antimicrobial substances. However, many novel and potent antimicrobials are yet to be discovered from these endophytes. The present study investigates the potential of endophytic fungi as a source of novel bioactive chemicals with antibacterial capabilities. These fungi synthesize secondary metabolites such as polyketides and peptides via polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) pathways. Notable substances, like prenylated indole alkaloids and fumaric acid, have shown promising antibacterial and antifungal properties against multidrug-resistant infectious agents. This review also emphasizes the symbiotic link between endophytes and their host plants, which is critical for secondary metabolite production. The study focuses on the significance of isolation methods for endophytes and proposes their use in for sustainable agriculture, bioremediation, and medicine. Future research combining endophytic biodiversity analysis with next-generation sequencing (NGS) and nanotechnology could provide novel techniques for combating AMR and contributing to sustainability across multiple industries.
Collapse
Affiliation(s)
- Asiya Nazir
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Abdul R. Puthuveettil
- College of Engineering, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | | | - Khalid E. Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, Buraydah, Saudi Arabia
| | - Nayla Munawar
- College of Engineering, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Mardonova G, Shurigin V, Eshboev F, Egamberdieva D. Potential plant benefits of endophytic microorganisms associated with halophyte Glycyrrhiza glabra L. AIMS Microbiol 2024; 10:859-879. [PMID: 39628723 PMCID: PMC11609431 DOI: 10.3934/microbiol.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024] Open
Abstract
In this study, bacteria associated with licorice (Glycyrrhiza glabra L.) were characterized through 16S rRNA gene analysis. Profiling of endophytic bacteria isolated from Glycyrrhiza glabra tissues revealed 18 isolates across the following genera: Enterobacter (4), Pantoea (3), Bacillus (2), Paenibacillus (2), Achromobacter (2), Pseudomonas (1), Escherichia (1), Klebsiella (1), Citrobacter (1), and Kosakonia (1). Furthermore, the beneficial features of bacterial isolates for plants were determined. The bacterial isolates showed the capacity to produce siderophores, hydrogen cyanide (HCN), indole-3-acetic acid (IAA), chitinase, protease, glucanase, lipase, and other enzymes. Seven bacterial isolates showed antagonistic activity against F. culmorum, F. solani, and R. solani. According to these results, licorice with antimicrobial properties may serve as a source for the selection of microorganisms that have antagonistic activity against plant fungal pathogens and may be considered potential candidates for the control of plant pathogens. The selected bacterial isolates, P. polymyxa GU1, A. xylosoxidans GU6, P. azotoformans GU7, and P. agglomerans GU18, increased root and shoot growth of licorice and were able to colonize the plant root. They can also serve as an active part of bioinoculants, improving plant growth.
Collapse
Affiliation(s)
- Gulsanam Mardonova
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent, 100000, Uzbekistan
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
| |
Collapse
|
3
|
Shurigin V, Li L, Alaylar B, Egamberdieva D, Liu YH, Li WJ. Plant beneficial traits of endophytic bacteria associated with fennel ( Foeniculum vulgare Mill.). AIMS Microbiol 2024; 10:449-467. [PMID: 38919721 PMCID: PMC11194617 DOI: 10.3934/microbiol.2024022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we used 16S rRNA gene sequence analysis to describe the diversity of cultivable endophytic bacteria associated with fennel (Foeniculum vulgare Mill.) and determined their plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: Firmicutes (BRN1 and BRN3), Proteobacteria (BRN5, BRN6, and BRN7), Gammaproteobacteria (BRN2), and Actinobacteria (BRN4). The bacterial isolates from the shoot of fennel represented the phyla Proteobacteria (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, and BRN3), and Actinobacteria (BRN4). The bacterial species Bacillus megaterium, Bacillus aryabhattai, and Brevibacterium frigoritolerans were found both in the roots and shoots of fennel. The bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates showed antagonistic activity against Fusarium culmorum, Fusarium solani, and Rhizoctonia. solani. Our findings show that medicinal plants with antibacterial activity may serve as a source for the selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may be considered as a viable option for the management of fungal diseases. They can also serve as an active part of biopreparation, improving plant growth.
Collapse
Affiliation(s)
- Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Burak Alaylar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Agri Ibrahim Cecen University, Agri 04100, Turkey
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Chen X, Zhang M, Tang L, Huang S, Guo T, Li Q. Screening and characterization of biocontrol bacteria isolated from Ageratum conyzoides against Collectotrichum fructicola causing Chinese plum ( Prunus salicina Lindl.) anthracnose. Front Microbiol 2023; 14:1296755. [PMID: 38130944 PMCID: PMC10734640 DOI: 10.3389/fmicb.2023.1296755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Qili Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
5
|
Kumar V, Nautiyal CS. Endophytes Modulate Plant Genes: Present Status and Future Perspectives. Curr Microbiol 2023; 80:353. [PMID: 37740026 DOI: 10.1007/s00284-023-03466-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Interactions among endophytes and plants are widespread and can vary from neutral or positive or negative. Plants are continually in a functionally dynamic state due to interactions with diverse endophytic microorganisms, which produce various metabolic substances. Through quorum sensing, these substances not only help endophytes to outcompete other host-associated pathogens or microbes but also allow them to overcome the plant immune system. Manifold interactions between endophytic microbiota cause a reflective impact on the host plant functioning and the development of 'endobiomes,' by synthesizing chemicals that fill the gap between host and endophytes. Despite the advances in the field, specific mechanisms for the endophytes' precise methods to modulate plant genome and their effects on host plants remain poorly understood. Deeper genomic exploration can provide a locked away understanding of the competencies of endophytes and their conceivable function in host growth and health. Endophytes also can modify host metabolites, which could manipulate plants' growth, adaptation, and proliferation, and can be a more exciting and puzzling topic that must be properly investigated. The consequence of the interaction of endophytes on the host genome was analyzed as it can help unravel the gray areas of endophytes about which very little or no knowledge exists. This review discusses the recent advances in understanding the future challenges in the emerging research investigating how endosymbionts affect the host's metabolism and gene expression as an effective strategy for imparting resistance to biotic and abiotic challenges.
Collapse
Affiliation(s)
- Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India.
| | - Chandra S Nautiyal
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jollygrant, Dehradun-248016, Uttrakhand, India
| |
Collapse
|
6
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|
7
|
Touchette D, Maggiori C, Altshuler I, Tettenborn A, Bourdages LJ, Magnuson E, Blenner-Hassett O, Raymond-Bouchard I, Ellery A, Whyte LG. Microbial Characterization of Arctic Glacial Ice Cores with a Semiautomated Life Detection System. ASTROBIOLOGY 2023; 23:756-768. [PMID: 37126945 DOI: 10.1089/ast.2022.0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (μMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The μMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive μMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the μMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
- Environmental Engineering Institute, River Ecosystems Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Environmental Engineering Institute, MACE Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alex Tettenborn
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
| | - Olivia Blenner-Hassett
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| | - Alex Ellery
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Canada
- McGill Space Institute, Montréal, Canada
| |
Collapse
|
8
|
Tsalgatidou PC, Thomloudi EE, Nifakos K, Delis C, Venieraki A, Katinakis P. Calendula officinalis-A Great Source of Plant Growth Promoting Endophytic Bacteria (PGPEB) and Biological Control Agents (BCA). Microorganisms 2023; 11:microorganisms11010206. [PMID: 36677498 PMCID: PMC9865722 DOI: 10.3390/microorganisms11010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic Bacteria, PGPEB). In the present study, 36 out of 119 isolated endophytic bacterial strains from roots, leaves and flowers of the pharmaceutical plant Calendula officinalis were further identified and classified into Bacillus, Pseudomonas, Pantoea, Stenotrophomonas and Rhizobium genera. Selected endophytes were evaluated depending on positive reaction to different plant growth promoting (PGP) traits, motility, survival rate and inhibition of phytopathogenic fungi in vitro and ex vivo (tomato fruit). Bacteria were further assessed for their plant growth effect on Arabidopsis thaliana seedlings and on seed bio-primed tomato plantlets, in vitro. Our results indicated that many bacterial endophytes increased seed germination, promoted plant growth and changed root structure by increasing lateral root density and length and root hair formation. The most promising antagonistic PGPEB strains (Cal.r.29, Cal.l.30, Cal.f.4, Cal.l.11, Cal.f.2.1, Cal.r.19 and Cal.r.11) are indicated as effective biological control agents (BCA) against Botrytis cinerea on detached tomato fruits. Results underlie the utility of beneficial endophytic bacteria for sustainable and efficient crop production and disease control.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kallimachos Nifakos
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
9
|
A Plant Endophytic Bacterium Priestia megaterium StrainBP-R2 Isolated from the Halophyte Bolboschoenus planiculmis Enhances Plant Growth under Salt and Drought Stresses. Microorganisms 2022; 10:microorganisms10102047. [PMID: 36296323 PMCID: PMC9610499 DOI: 10.3390/microorganisms10102047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Global warming and climate change have contributed to the rise of weather extremes. Severe drought and soil salinization increase because of rising temperatures. Economically important crop production and plant growth and development are hindered when facing various abiotic stresses. Plant endophytic bacteria live inside host plants without causing visible harm and can be isolated from surface-sterilized plant tissues. Using plant endophytic bacteria to stimulate plant growth and increase environmental stress tolerance has become an alternative approach besides using the traditional breeding and genetically modifying approaches to select or create new crop types resistant to different environmental stresses. The plant endophytic bacterium, Priestia megaterium (previously known as Bacillus megaterium) strain BP-R2, was isolated from the surface-sterilized root tissues of the salt marsh halophyte Bolboschoenus planiculmis. The bacteria strain BP-R2 showed high tolerance to different sodium chloride (NaCl) concentrations and produced the auxin plant hormone, indole acetic acid (IAA), under various tested growth conditions. Inoculation of Arabidopsis and pak choi (Brassica rapa L. R. Chinensis Group) plants with the strain BP-R2 greatly enhanced different growth parameters of the host plants under normal and salt and drought stress conditions compared to that of the mock-inoculated plants. Furthermore, the hydrogen peroxide (H2O2) content, electrolyte leakage (EL), and malondialdehyde (MDA) concentration accumulated less in the BP-R2-inoculated plants than in the mock-inoculated control plants under salt and drought stresses. In summary, the plant endophytic bacterium strain BP-R2 increased host plant growth and stress tolerance to salt and drought conditions.
Collapse
|
10
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
11
|
The diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100133. [PMID: 35909614 PMCID: PMC9325737 DOI: 10.1016/j.crmicr.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study reports the diversity of cultivable endophytic bacteria associated with yellow iris (Iris pseudacorus L.) by using 16S rRNA gene analysis and their plant beneficial traits. The 16S rRNA sequence similarities of endophytic bacteria isolated from the leaves and roots of yellow iris showed that the isolates belonged to the genera Staphylococcus, Streptomyces, Variovorax, Pantoea, Paenibacillus, Bacillus, Janthinobacterium, Enterobacter, Brevibacterium, Agrobacterium, Rhizobium, Xanthomonas translucens, and Pseudomonas. The endophytic bacteria Pseudomonas gessardii HRT18, Brevibacterium frigoritolerans HRT8, Streptomyces atratus HRT13, and Bacillus toyonensis HST13 exhibited antimicrobial activity against five plant pathogenic fungi Fusarium, Rhizoctonia, Botrytis, Pythium, and Alternaria. They also demonstrated the capability to produce chitinase, protease, glucanase, lipase, HCN, and indole-3-acetic acid (IAA). Thirteen isolates (46%) produced IAA, and the most active IAA producers were Bacillus cereus, Agrobacterium tumefaciens, Agrobacterium vitis, Bacillus megaterium, and Bacillus aryabhattai. The IAA producing bacterial isolates stimulated root and shoot growth of garden cress. Our findings suggest that medicinal plants could be a promising source for isolating plant-beneficial bacteria that can be used to enhance the growth and protect plants against soil-borne pathogens.
Collapse
|