1
|
Boroumand M, Olianas A, Manconi B, Serrao S, Iavarone F, Desiderio C, Pieroni L, Faa G, Messana I, Castagnola M, Cabras T. Mapping of Transglutaminase-2 Sites of Human Salivary Small Basic Proline-Rich Proteins by HPLC-High-Resolution ESI-MS/MS. J Proteome Res 2020; 19:300-313. [PMID: 31638822 DOI: 10.1021/acs.jproteome.9b00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Because of the distinctive features of the oral cavity, the determination of the proteins involved in the formation of the "oral protein pellicle" is demanding. The present study investigated the susceptibility of several human basic proline-rich peptides, named P-H, P-D, P-F, P-J, and II-2, as substrates of transglutaminase-2. The reactivity of the P-C peptide and statherin was also investigated. Peptides purified from human whole saliva were incubated with the enzyme in the presence or in the absence of monodansyl-cadaverine. Mass spectrometry analyses of the reaction products highlighted that P-H and P-D (P32 and A32 variants) were active substrates, II-2 was less reactive, and P-F and P-J showed very low reactivity. P-C and statherin were highly reactive. All of the peptides formed cyclo derivatives, and only specific glutamine residues were involved in the cycle formation and reacted with monodansyl-cadaverine: Q29 of P-H, Q37 of P-D, Q21 of II-2, Q41 of P-C, and Q37 of statherin were the principal reactive residues. One or two secondary glutamine residues of only P-H, P-D P32, P-C, and statherin were hierarchically susceptible to the reaction with monodansyl-cadaverine. MS and MS/MS data were deposited to the ProteomeXchange Consortium ( http://www.ebi.ac.uk/pride ) via the PRIDE partner repository with the data set identifier PXD014658.
Collapse
Affiliation(s)
- Mozhgan Boroumand
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Roma 00168 , Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS , Roma 00143 , Italy
| | - Claudia Desiderio
- Istituto di Chimica del Riconoscimento Molecolare , Rome 00168 , Italy
| | - Luisa Pieroni
- Laboratorio di Proteomica -Centro Europeo di Ricerca sul Cervello- IRCCS , Fondazione Santa Lucia , Roma 00142 , Italy
| | - Gavino Faa
- Department of Pathology, AOU , University of Cagliari , Cagliari 09100 , Italy
| | - Irene Messana
- Istituto di Chimica del Riconoscimento Molecolare , Rome 00168 , Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica -Centro Europeo di Ricerca sul Cervello- IRCCS , Fondazione Santa Lucia , Roma 00142 , Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences , University of Cagliari, Cittadella Univ. Monserrato , Monserrato, Cagliari 09042 , Italy
| |
Collapse
|