1
|
Attaye I, Lassen PB, Adriouch S, Steinbach E, Patiño-Navarrete R, Davids M, Alili R, Jacques F, Benzeguir S, Belda E, Nemet I, Anderson JT, Alexandre-Heymann L, Greyling A, Larger E, Hazen SL, van Oppenraaij SL, Tremaroli V, Beck K, Bergh PO, Bäckhed F, ten Brincke SP, Herrema H, Groen AK, Pinto-Sietsma SJ, Clément K, Nieuwdorp M. Protein supplementation changes gut microbial diversity and derived metabolites in subjects with type 2 diabetes. iScience 2023; 26:107471. [PMID: 37599833 PMCID: PMC10432813 DOI: 10.1016/j.isci.2023.107471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Pierre Bel Lassen
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Emilie Steinbach
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Rafael Patiño-Navarrete
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Mark Davids
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Rohia Alili
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Flavien Jacques
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Sara Benzeguir
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
| | - Ina Nemet
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - James T. Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
| | | | - Arno Greyling
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Etienne Larger
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Stanley L. Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland, OH, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland, OH, USA
| | - Sophie L. van Oppenraaij
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Katharina Beck
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, 413 45 Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Suzan P.M. ten Brincke
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities; Systemic Approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Nutrition Department, Paris, France
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Abstract
Chronic kidney disease (CKD) has a prevalence of approximately 13% and is most frequently caused by diabetes and hypertension. In population studies, CKD etiology is often uncertain. Some experimental and observational human studies have suggested that high-protein intake may increase CKD progression and even cause CKD in healthy people. The protein source may be important. Daily red meat consumption over years may increase CKD risk, whereas white meat and dairy proteins appear to have no such effect, and fruit and vegetable proteins may be renal protective. Few randomized trials exist with an observation time greater than 6 months, and most of these were conducted in patients with preexisting diseases that dispose to CKD. Results conflict and do not allow any conclusion about kidney-damaging effects of long-term, high-protein intake. Until additional data become available, present knowledge seems to substantiate a concern. Screening for CKD should be considered before and during long-term, high-protein intake.
Collapse
Affiliation(s)
- Anne-Lise Kamper
- Department of Nephrology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Svend Strandgaard
- Department of Nephrology, Herlev Hospital, University of Copenhagen, 2730 Copenhagen, Denmark;
| |
Collapse
|