1
|
Monteyne AJ, Dunlop MV, Machin DJ, Coelho MOC, Pavis GF, Porter C, Murton AJ, Abdelrahman DR, Dirks ML, Stephens FB, Wall BT. A mycoprotein-based high-protein vegan diet supports equivalent daily myofibrillar protein synthesis rates compared with an isonitrogenous omnivorous diet in older adults: a randomised controlled trial. Br J Nutr 2021; 126:674-684. [PMID: 33172506 PMCID: PMC8110608 DOI: 10.1017/s0007114520004481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Animal-derived dietary protein ingestion and physical activity stimulate myofibrillar protein synthesis rates in older adults. We determined whether a non-animal-derived diet can support daily myofibrillar protein synthesis rates to the same extent as an omnivorous diet. Nineteen healthy older adults (aged 66 (sem 1) years; BMI 24 (sem 1) kg/m2; twelve males, seven females) participated in a randomised, parallel-group, controlled trial during which they consumed a 3-d isoenergetic high-protein (1·8 g/kg body mass per d) diet, where the protein was provided from predominantly (71 %) animal (OMNI; n 9; six males, three females) or exclusively vegan (VEG; n 10; six males, four females; mycoprotein providing 57 % of daily protein intake) sources. During the dietary control period, participants conducted a daily bout of unilateral resistance-type leg extension exercise. Before the dietary control period, participants ingested 400 ml of deuterated water, with 50-ml doses consumed daily thereafter. Saliva samples were collected throughout to determine body water 2H enrichments, and muscle samples were collected from rested and exercised muscle to determine daily myofibrillar protein synthesis rates. Deuterated water dosing resulted in body water 2H enrichments of approximately 0·78 (sem 0·03) %. Daily myofibrillar protein synthesis rates were 13 (sem 8) (P = 0·169) and 12 (sem 4) % (P = 0·016) greater in the exercised compared with rested leg (1·59 (sem 0·12) v. 1·77 (sem 0·12) and 1·76 (sem 0·14) v. 1·93 (sem 0·12) %/d) in OMNI and VEG groups, respectively. Daily myofibrillar protein synthesis rates did not differ between OMNI and VEG in either rested or exercised muscle (P > 0·05). Over the course of a 3-d intervention, omnivorous- or vegan-derived dietary protein sources can support equivalent rested and exercised daily myofibrillar protein synthesis rates in healthy older adults consuming a high-protein diet.
Collapse
Affiliation(s)
- Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - David J Machin
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Mariana OC Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - George F Pavis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- The Claude D. Pepper Older Americans Independence Center University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Marlou L Dirks
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
2
|
Nygård LK, Mundal I, Dahl L, Šaltytė Benth J, Rokstad AMM. Limited Benefit of Marine Protein Hydrolysate on Physical Function and Strength in Older Adults: A Randomized Controlled Trial. Mar Drugs 2021; 19:md19020062. [PMID: 33513714 PMCID: PMC7912527 DOI: 10.3390/md19020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/16/2022] Open
Abstract
Age-related muscle wasting can compromise functional abilities of the elderly. Protein intake stimulates muscle protein synthesis; however, ageing muscle is more resistant to stimuli. This double-blinded, randomized, controlled trial is one of the first registered studies to evaluate the effects of a supplement of marine protein hydrolysate (MPH) on measures of physical function and strength. Eighty-six older adults received nutritional supplements containing 3 g of MPH or a placebo for up to 12 months. Short Physical Performance Battery (SPPB), grip strength and gait speed were measured, and dietary intake was registered at baseline, 6 months, and 12 months. No difference was found between the intervention and control groups in mean change in SPPB (independent sample t-test, p = 0.41) or regarding time trend in SPPB, grip strength, or gait speed (linear mixed model). The participants in our study were well functioning, causing a ceiling effect in SPPB. Further, they had sufficient protein intake and were physically active. Differences in physical function between those completing the intervention and the dropouts might also have created bias in the results. We recommend that future studies of MPH be carried out on a more frail or malnourished population.
Collapse
Affiliation(s)
- Linda Kornstad Nygård
- Faculty of Health Sciences and Social Care, Molde University College, P.O. Box 2110, 6402 Molde, Norway; (I.M.); (A.M.M.R.)
- Correspondence: ; Tel.: +47-712-14000
| | - Ingunn Mundal
- Faculty of Health Sciences and Social Care, Molde University College, P.O. Box 2110, 6402 Molde, Norway; (I.M.); (A.M.M.R.)
- Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), P.O. Box 8905, 7491 Trondheim, Norway
| | - Lisbeth Dahl
- Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway;
| | - Jūratė Šaltytė Benth
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, P.O. Box 1171, Blindern, 0318 Oslo, Norway;
- Health Services Research Unit, Akershus University Hospital, P.O. Box 1000, 1478 Lørenskog, Norway
| | - Anne Marie Mork Rokstad
- Faculty of Health Sciences and Social Care, Molde University College, P.O. Box 2110, 6402 Molde, Norway; (I.M.); (A.M.M.R.)
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, P.O. Box 2136, 3103 Tønsberg, Norway
| |
Collapse
|
3
|
Protein Intake, Protein Mealtime Distribution and Seafood Consumption in Elderly Norwegians: Associations with Physical Function and Strength. Geriatrics (Basel) 2020; 5:geriatrics5040100. [PMID: 33287380 PMCID: PMC7768430 DOI: 10.3390/geriatrics5040100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022] Open
Abstract
Protein intake is considered important in the maintenance of muscle health in ageing. However, both the source and mealtime distribution of protein might affect the intake of protein and its effect on muscle protein synthesis. In this study, protein intake, mealtime distribution of protein, and seafood consumption were assessed in 92 older adults (aged 65+), and associations with physical performance (Short Physical Performance Battery (SPPB)), grip strength and gait speed were assessed in a multiple linear regression analysis. The participants had a mean age of 73 ± 8.9 years. Mean protein intake was 1.1 g/kg body weight. Protein intake was well distributed, with coefficient of variance between meals (CV meals) 0.6 ± 0.3. However, dinner had the highest protein intake. No associations were found between the nutrition factors and physical performance or strength; however, this result might have been caused by a ceiling effect in the chosen test batteries, as the mean score on SPPB was 10.3 ± 2.7, and 48.9% of the participants reached the top score of 12 points. Mean grip strength was 44.4 ± 9.4 kg (men) and 26.2 ± 6.8 kg (women). Mean gait speed was 1.0 ± 0.3 m/s. The interaction analysis suggests that there might be gender differences in the effect of seafood consumption on gait speed.
Collapse
|
4
|
Coelho MOC, Monteyne AJ, Dunlop MV, Harris HC, Morrison DJ, Stephens FB, Wall BT. Mycoprotein as a possible alternative source of dietary protein to support muscle and metabolic health. Nutr Rev 2020; 78:486-497. [PMID: 31841152 DOI: 10.1093/nutrit/nuz077] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The world's population is expanding, leading to an increased global requirement for dietary protein to support health and adaptation in various populations. Though a strong evidence base supports the nutritional value of animal-derived dietary proteins, mounting challenges associated with sustainability of these proteins have led to calls for the investigation of alternative, non-animal-derived dietary protein sources. Mycoprotein is a sustainably produced, protein-rich, high-fiber, whole food source derived from the fermentation of fungus. Initial investigations in humans demonstrated that mycoprotein consumption can lower circulating cholesterol concentrations. Recent data also report improved acute postprandial glycemic control and a potent satiety effect following mycoprotein ingestion. It is possible that these beneficial effects are attributable to the amount and type of dietary fiber present in mycoprotein. Emerging data suggest that the amino acid composition and bioavailability of mycoprotein may also position it as a promising dietary protein source to support skeletal muscle protein metabolism. Mycoprotein may be a viable dietary protein source to promote training adaptations in athletes and the maintenance of muscle mass to support healthy aging. Herein, current evidence underlying the metabolic effects of mycoprotein is reviewed, and the key questions to be addressed are highlighted.
Collapse
Affiliation(s)
- Mariana O C Coelho
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Alistair J Monteyne
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mandy V Dunlop
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Hannah C Harris
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,School of Medicine, Dentistry and Nursing, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Douglas J Morrison
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Francis B Stephens
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Daily mycoprotein consumption for 1 week does not affect insulin sensitivity or glycaemic control but modulates the plasma lipidome in healthy adults: a randomised controlled trial. Br J Nutr 2020; 125:147-160. [DOI: 10.1017/s0007114520002524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractMycoprotein consumption has been shown to improve acute postprandial glycaemic control and decrease circulating cholesterol concentrations. We investigated the impact of incorporating mycoprotein into the diet on insulin sensitivity (IS), glycaemic control and plasma lipoprotein composition. Twenty healthy adults participated in a randomised, parallel-group trial in which they consumed a 7 d fully controlled diet where lunch and dinner contained either meat/fish (control group, CON) or mycoprotein (MYC) as the primary source of dietary protein. Oral glucose tolerance tests were performed pre- and post-intervention, and 24 h continuous blood glucose monitoring was applied throughout. Fasting plasma samples were obtained pre- and post-intervention and were analysed using quantitative, targeted NMR-based metabonomics. There were no changes within or between groups in blood glucose or serum insulin responses, nor in IS or 24 h glycaemic profiles. No differences between groups were found for 171 of the 224 metabonomic targets. Forty-five lipid concentrations of different lipoprotein fractions (VLDL, LDL, intermediate-density lipoprotein and HDL) remained unchanged in CON but showed a coordinated decrease (7–27 %; all P < 0·05) in MYC. Total plasma cholesterol, free cholesterol, LDL-cholesterol, HDL2-cholesterol, DHA and n-3 fatty acids decreased to a larger degree in MYC (14–19 %) compared with CON (3–11 %; P < 0·05). Substituting meat/fish for mycoprotein twice daily for 1 week did not modulate whole-body IS or glycaemic control but resulted in changes to plasma lipid composition, the latter primarily consisting of a coordinated reduction in circulating cholesterol-containing lipoproteins.
Collapse
|
6
|
Effects of high-protein diet combined with exercise to counteract frailty in pre-frail and frail community-dwelling older adults: study protocol for a three-arm randomized controlled trial. Trials 2020; 21:637. [PMID: 32653012 PMCID: PMC7353704 DOI: 10.1186/s13063-020-04572-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Background The proportion of older citizens is increasing worldwide. A well-known syndrome in old age is physical frailty which is associated with a greater risk of disabilities in activities of daily living, greater reliance on in-home services, hospitalization, institutionalization, and premature mortality. The purpose of this study is to determine the effects of an intervention with high-protein diet alone or in combination with power training in pre-frail and frail old adults. Methods The study is a community-based assessor-blinded parallel randomized controlled trial (RCT), consisting of two phases. Phase 1 is a 1-month stabilization phase, where self-reliant community-dwelling adults + 80 years old will receive individual guidance regarding protein intake, to prevent the risk of negative protein balance prior to phase 2 and to only include participants who have reached the minimum recommended level of protein intake (1.0 g/kg/day) in the randomized controlled trial. Phase 2 is a 4-month RCT where 150 participants will be randomized into the following three arms: protein-only where participants will be provided with dairy products to increase their protein intake to 1.5 g/kg/day, protein + exercise where participants will be provided with the protein intervention in combination with power training two times a week, and recommendation group where participants will continue as in phase 1. Primary outcome is lower leg muscle power. Secondary outcomes include physical function and mobility, frailty status, muscle mechanical function, body composition, nutritional status, and health-related quality of life. The statistical analysis will include an intention-to-treat analysis of all randomized participant and per-protocol analysis of all compliant participants. The study hypothesis will be tested with mixed linear models to assess changes in the main outcomes over time and between study arms. Discussion The finding of this study may add to the knowledge about the beneficial effects of high-protein diet from dairy products combined with power training to counteract frailty in community-dwelling older adults. This may ultimately have an impact on the ability to live well and independent for longer. Trial registration ClinicalTrials.gov NCT03842579. Registered on 15 February 2019, version 1
Collapse
|
7
|
Oliveira CL, Dionne IJ, Prado CM. Are Canadian protein and physical activity guidelines optimal for sarcopenia prevention in older adults? Appl Physiol Nutr Metab 2018; 43:1215-1223. [DOI: 10.1139/apnm-2018-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging is characterized by physiological and morphological changes that affect body composition, strength, and function, ultimately leading to sarcopenia. This condition results in physical disability, falls, fractures, poor quality of life, and increased health care costs. Evidence suggests that increased consumption of dietary protein and physical activity levels, especially resistance exercise, can counteract the trajectory of sarcopenia. Canadian guidelines for protein intake and physical activity were last updated in 2005 and 2011, respectively, and new evidence on sarcopenia diagnosis, prevention, and treatment is rapidly evolving. Protein recommendations are set as “one-size-fits-all” for both young and older adults. Recent evidence demonstrates that current recommendations are insufficient to meet the minimum protein requirement to counteract muscle loss and to stimulate hypertrophy in healthy older adults. Beyond quantity, protein quality is also essential to benefit muscle anabolism in older adults. In terms of physical activity, resistance exercise training is a potential strategy to counteract age-related effects, as it can elicit muscle hypertrophic response in addition to increases in muscle strength and function in older adults. Canadian physical activity guidelines lack details on how this modality of training should be performed. Current guidelines for protein intake and physical activity do not reflect recent knowledge on sarcopenia prevention. The gap between guidelines and the latest evidence on the maintenance and promotion of older adult’s health highlight the need for updated protein and physical activity recommendations.
Collapse
Affiliation(s)
- Camila L.P. Oliveira
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Isabelle J. Dionne
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, CIUSS de l’Estrie-CHUS, 1036 rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| | - Carla M. Prado
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, 2-004 Li Ka Shing Center for Health Research Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
8
|
Mundi MS, Patel J, McClave SA, Hurt RT. Current perspective for tube feeding in the elderly: from identifying malnutrition to providing of enteral nutrition. Clin Interv Aging 2018; 13:1353-1364. [PMID: 30122907 PMCID: PMC6080667 DOI: 10.2147/cia.s134919] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the number of individuals older than 65 years expected to rise significantly over the next few decades, dramatic changes to our society and health care system will need to take place to meet their needs. Age-related changes in muscle mass and body composition along with medical comorbidities including stroke, dementia, and depression place elderly adults at high risk for developing malnutrition and frailty. This loss of function and decline in muscle mass (ie, sarcopenia) can be associated with reduced mobility and ability to perform the task of daily living, placing the elderly at an increased risk for falls, fractures, and subsequent institutionalization, leading to a decline in the quality of life and increased mortality. There are a number of modifiable factors that can mitigate some of the muscle loss elderly experience especially when hospitalized. Due to this, it is paramount for providers to understand the pathophysiology behind malnutrition and sarcopenia, be able to assess risk factors for malnutrition, and provide appropriate nutrition support. The present review describes the pathophysiology of malnutrition, identifies contributing factors to this condition, discusses tools to assess nutritional status, and proposes key strategies for optimizing enteral nutrition therapy for the elderly.
Collapse
Affiliation(s)
- Manpreet S Mundi
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA,
| | - Jayshil Patel
- Division of Pulmonary, Critical Care & Sleep Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephen A McClave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA
| | - Ryan T Hurt
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY, USA.,Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|