1
|
Ma K, Sheng W, Gao R, Feng J, Huang W, Cui L, Liu J, Li Y. Ethanolic extract of root from Arctium lappa L ameliorates obesity and hepatic steatosis in rats by regulating the AMPK/ACC/CPT-1 pathway. J Food Biochem 2022; 46:e14455. [PMID: 36183168 DOI: 10.1111/jfbc.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
Burdock (Arctium lappa L) root is eaten as a vegetable in many countries and used as an ethnomedicine because of its various pharmacological effects. The objective of this study was to investigate the underlying mechanisms of ethanolic extract of root from Arctium lappa L root (ALE) to lose weight and regulate lipid metabolism. The results showed that ALE can regulate lipid metabolism level and inhibit the weight gain of rats induced by the high-sugar and high-fat diet. The contents of triglyceride and cholesterol in the liver of obese rats significantly reduced, and hepatic steatosis was ameliorated. In addition, this study identified that ALE enhanced hepatic fatty acid β-oxidation and ameliorated hepatic steatosis by activating AMPK/ACC/CPT-1 pathway. These results indicated that ALE has a potential preventive and therapeutic effect on metabolic-associated fatty liver disease and obesity. PRACTICAL APPLICATIONS: Obesity is already a global health problem. Obesity causes accumulation of triglycerides, which leads to hepatic steatosis. Long-term steatosis causes liver damage and metabolic fatty liver disease. Plant-derived functional foods or herbal medicines have better effects on weight loss and liver protection, which are more conducive to long-term use with less toxic side effects. As a medicinal and edible plant material, Arctium lappa L root has the effect in losing weight. Our study showed that ethanolic extract of Arctium lappa L root effectively regulates lipid metabolism and inhibits hepatic steatosis. Arctium lappa L root may be used as a therapeutic drug and functional food raw material for obesity and fatty liver disease.
Collapse
Affiliation(s)
- Kaiyang Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weixi Sheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Gao
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Feng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Cui
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Ying Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
2
|
Yan S, Zhou H, Liu S, Wang J, Zeng Y, Matias FB, Wen L. Differential effects of Chinese high-fat dietary habits on lipid metabolism: mechanisms and health implications. Lipids Health Dis 2020; 19:30. [PMID: 32113467 PMCID: PMC7049192 DOI: 10.1186/s12944-020-01212-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
Background The traditional Chinese diet blends lard with vegetable oil, keeping the fatty acid balance intake ratio of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids at nearly 1:1:1. However, the effects of a mixture of lard and vegetable oil on lipid metabolism have never been researched. In the present study, by simulating Chinese high-fat dietary habits, we explored the effects of a mixture of lard and vegetable oil on lipid metabolism. Methods We randomly assigned 50 male C57BL/6 J mice to 5 groups (10 in each group) and fed them lard, sunflower oil (SFO), soybean oil (SBO), lard blended with sunflower oil (L-SFO), or lard blended with soybean oil (L-SBO) for 12 weeks. Results We found that the final body weights of mice in the lard group were significantly higher than those of mice in the SFO and SBO groups. Body fat rate and volume of fat cell of the lard group were significantly higher than those of the SFO, SBO, and L-SBO groups. Liver triglyceride level of the lard group increased significantly compared to the other groups. Although body fat rate and liver triglyceride level in the SBO and SFO groups decreased compared to those in the other groups, the high-density lipoprotein cholesterol/low-density lipoprotein cholesterol ratio were also significantly decreased in the SBO and SFO groups. Conclusions We found that a lard diet induced accumulation of body fat, liver and serum lipids, which can increase the risk of obesity, non-alcoholic fatty acid liver disease, and atherosclerosis. The vegetable oil diet resulted in cholesterol metabolism disorders even though it did not lead to obesity. The mixed oil diet induced body fat accumulation, but did not cause lipid accumulation in the liver and serum. Thus, differential oil/fat diets have an impact on differential aspects in mouse lipid metabolism. Graphical abstract ![]()
Collapse
Affiliation(s)
- Sisi Yan
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China
| | - Huijuan Zhou
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China
| | - Shuiping Liu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China.,Changsha Lvye Biotechnology Co., Ltd, Changsha, Hunan Province, People's Republic of China
| | - Yu Zeng
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China
| | - Froilan Bernard Matias
- Department of Animal Management, College of Veterinary Science and Medicine, Central Luzon State University, 3120, Science City of Muñoz, Nueva Ecija, Philippines
| | - Lixin Wen
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China. .,Hunan Collaborative Innovation Center of Animal Production Safety, No. 1, Nongda Road, Changsha City, 410128, Hunan Province, People's Republic of China.
| |
Collapse
|