1
|
Gao H, Wan X, Xiao B, Yang K, Wang Y, Zhang C, Li P, Liu L, Xia T, Wang A, Zhang S. Impacts of PBDE-47 exposure before, during and after pregnancy on the maternal gut microbiome and its association with host metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112530. [PMID: 34280840 DOI: 10.1016/j.ecoenv.2021.112530] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/06/2023]
Abstract
Maternal gut microbiota play an important role in the modulation of offspring disease susceptibility and gut microbiota dysbiosis has been proposed as a mechanism through which toxic environmental chemicals exert their adverse impacts on health. The brominated flame retardants polybrominated diphenyl ethers (PBDEs) are developmental toxicants and induce dysbiotic gut microbiota in offspring. Yet, whether and how PBDEs impact the maternal gut microbiota remain unclear. Here, we sought to investigate the effect of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) exposure from preconception through lactation cessation on maternal gut microbiota and its link to host serum metabolic consequences. Female Sprague-Dawley rats were daily exposed to 10 mg/kg PBDE-47 via oral gavage from ten days before conception until offspring were weaned on postnatal day 21, then maternal fecal and blood samples were collected for microbiome and metabolome analyses by using 16S ribosomal RNA gene sequencing and gas chromatography-mass spectrometry, respectively. Maternal exposure to PBDE-47 showed a distinct profile in gut microbiota compared to control dams, as evidenced by increased Actinobacteria phylum and genera Blautia, Gemella and Phascolarctobacterium, and decreased genera AF12 and Oscillospira. Additionally, global metabolomics analysis identified 26 differential serum metabolites to distinguish PBDE-47 from controls, which were mainly involved in amino acid, lipid, carbohydrate and energy metabolism, further confirmed by pathway analysis. Importantly, the differential serum metabolites are closely correlated with the disturbed gut microbiota in response to PBDE-47. Collectively, our results suggest that maternal gut microbial dysbiosis may serve as a potential mechanism underlying PBDE-47-elicited health hazards to mothers or even offspring.
Collapse
Affiliation(s)
- Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Kaichao Yang
- Immunization Planning Institute, Henan Provincial Center for Disease Control and Prevention, 105 Nongye South Road, Zhengzhou, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Cheng Zhang
- Department of Occupational Health, Wuhan Prevention and Treatment Center for Occupational Diseases, 18 Jianghan North Road, Wuhan, China
| | - Pei Li
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Luming Liu
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China.
| |
Collapse
|
2
|
Associations between untargeted plasma metabolomic signatures and gut microbiota composition in the Milieu Intérieur population of healthy adults. Br J Nutr 2020; 126:982-992. [PMID: 33298217 DOI: 10.1017/s0007114520004870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host-microbial co-metabolism products are being increasingly recognised to play important roles in physiological processes. However, studies undertaking a comprehensive approach to consider host-microbial metabolic relationships remain scarce. Metabolomic analysis yielding detailed information regarding metabolites found in a given biological compartment holds promise for such an approach. This work aimed to explore the associations between host plasma metabolomic signatures and gut microbiota composition in healthy adults of the Milieu Intérieur study. For 846 subjects, gut microbiota composition was profiled through sequencing of the 16S rRNA gene in stools. Metabolomic signatures were generated through proton NMR analysis of plasma. The associations between metabolomic variables and α- and β-diversity indexes and relative taxa abundances were tested using multi-adjusted partial Spearman correlations, permutational ANOVA and multivariate associations with linear models, respectively. A multiple testing correction was applied (Benjamini-Hochberg, 10 % false discovery rate). Microbial richness was negatively associated with lipid-related signals and positively associated with amino acids, choline, creatinine, glucose and citrate (-0·133 ≤ Spearman's ρ ≤ 0·126). Specific associations between metabolomic signals and abundances of taxa were detected (twenty-five at the genus level and nineteen at the species level): notably, numerous associations were observed for creatinine (positively associated with eleven species and negatively associated with Faecalibacterium prausnitzii). This large-scale population-based study highlights metabolites associated with gut microbial features and provides new insights into the understanding of complex host-gut microbiota metabolic relationships. In particular, our results support the implication of a 'gut-kidney axis'. More studies providing a detailed exploration of these complex interactions and their implications for host health are needed.
Collapse
|
3
|
Müller M, Hermes GDA, Emanuel E. C, Holst JJ, Zoetendal EG, Smidt H, Troost F, Schaap FG, Damink SO, Jocken JWE, Lenaerts K, Masclee AAM, Blaak EE. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes 2020; 12:1704141. [PMID: 31983281 PMCID: PMC7524158 DOI: 10.1080/19490976.2019.1704141] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute intake of the wheat bran extract Arabinoxylan-Oligosaccharide (AXOS) modulates the gut microbiota, improves stool characteristics and postprandial glycemia in healthy humans. Yet, little is known on how long-term AXOS intake influences gastrointestinal (GI) functioning, gut microbiota, and metabolic health. In this randomized, placebo-controlled, double-blind study, we evaluated the effects of AXOS intake on GI function and metabolic health in adults with slow GI transit without constipation. Forty-eight normoglycemic adults were included with whole-gut transit time (WGTT) of >35 h receiving either 15 g/day AXOS or placebo (maltodextrin) for 12-wks. The primary outcome was WGTT, and secondary outcomes included stool parameters, gut permeability, short-chain fatty acids (SCFA), microbiota composition, energy expenditure, substrate oxidation, glucose, insulin, lipids, gut hormones, and adipose tissue (AT) function. WGTT was unchanged, but stool consistency softened after AXOS. 12-wks of AXOS intake significantly changed the microbiota by increasing Bifidobacterium and decreasing microbial alpha-diversity. With a good classification accuracy, overall microbiota composition classified responders with decreased WGTT after AXOS. The incretin hormone Glucagon-like protein 1 was reduced after AXOS compared to placebo. Energy expenditure, plasma metabolites, AT parameters, SCFA, and gut permeability were unchanged. In conclusion, intake of wheat bran extract increases fecal Bifidobacterium and softens stool consistency without major effects on energy metabolism in healthy humans with a slow GI transit. We show that overall gut microbiota classified responders with decreased WGTT after AXOS highlighting that GI transit and change thereof were associated with gut microbiota independent of Bifidobacterium. NCT02491125.
Collapse
Affiliation(s)
- Mattea Müller
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gerben D. A. Hermes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Canfora Emanuel E.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy Troost
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,Food Innovation and Health Research, Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, The Netherlands
| | - Frank G. Schaap
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Steven Olde Damink
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ad A. M. Masclee
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,CONTACT Ellen E. Blaak Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht6200, The Netherlands
| |
Collapse
|
4
|
Balicki S, Pawlaczyk-Graja I, Gancarz R, Capek P, Wilk KA. Optimization of Ultrasound-Assisted Extraction of Functional Food Fiber from Canadian Horseweed ( Erigeron canadensis L.). ACS OMEGA 2020; 5:20854-20862. [PMID: 32875220 PMCID: PMC7450493 DOI: 10.1021/acsomega.0c02181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Much attention has been recently paid to the design of sustainable processes for the production of functional food additives based on renewable resources. Thus, methods for incorporation of green techniques in treatment of undeveloped biomass, resulting in value-added bioproducts, are in great demand. We focus here on the biological activity and chemical properties of Erigeron canadensis (horseweed) functional food fiber, which can be strongly affected by the extraction procedure employed. In the present contribution, we report on an attempt to introduce a sustainable and energy-efficient ultrasound-assisted extraction process, followed by a multistep purification procedure, resulting in a macromolecular plant-derived anticoagulant agent. The most efficient ultrasound-assisted process was determined by optimization through the response surface methodology I-optimal design (24). A comparison with the conventional procedure for retrieval of horseweed biomacromolecules revealed that the optimized ultrasound-assisted extraction was more sustainable, with the cumulative energy demand being 38% lower (12.2 MJ), 6.6 times reduced water consumption (3.5 L), and 1.2 times shorter (41 h) total processing time. Moreover, the optimal ultrasound-assisted extraction process-purified food fiber turned out to be a better anticoagulant agent by 57%, compared to a conventional product, and was a more selective indirect inhibitor of the human Xa coagulation factor.
Collapse
Affiliation(s)
- Sebastian Balicki
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Izabela Pawlaczyk-Graja
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Roman Gancarz
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Peter Capek
- Institute
of Chemistry, Center for Glycomics, Slovak
Academy of Sciences, Dubravská cesta 9, 845 38 Bratislava, Slovakia
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
Yu EA, Yu T, Jones DP, Martorell R, Ramirez-Zea M, Stein AD. Macronutrient, Energy, and Bile Acid Metabolism Pathways Altered Following a Physiological Meal Challenge, Relative to Fasting, among Guatemalan Adults. J Nutr 2020; 150:2031-2040. [PMID: 32597983 PMCID: PMC7398776 DOI: 10.1093/jn/nxaa169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The healthy human metabolome, including its physiological responses after meal consumption, remains incompletely understood. One major research gap is the limited literature assessing how human metabolomic profiles differ between fasting and postprandial states after physiological challenges. OBJECTIVES Our study objective was to evaluate alterations in high-resolution metabolomic profiles following a standardized meal challenge, relative to fasting, in Guatemalan adults. METHODS We studied 123 Guatemalan adults without obesity, hypertension, diabetes, metabolic syndrome, or comorbidities. Every participant received a standardized meal challenge (520 kcal, 67.4 g carbohydrates, 24.3 g fat, 8.0 g protein) and provided blood samples while fasting and at 2 h postprandial. Plasma samples were assayed by high-resolution metabolomics with dual-column LC [C18 (negative electrospray ionization), hydrophilic interaction LC (HILIC, positive electrospray ionization)] coupled to ultra-high-resolution MS. Associations between metabolomic features and the meal challenge timepoint were assessed in feature-by-feature multivariable linear mixed regression models. Two algorithms (mummichog, gene set enrichment analysis) were used for pathway analysis, and P values were combined by the Fisher method. RESULTS Among participants (62.6% male, median age 43.0 y), 1130 features (C18: 777; HILIC: 353) differed between fasting and postprandial states (all false discovery rate-adjusted q < 0.05). Based on differing C18 features, top pathways included: tricarboxylic acid cycle (TCA), primary bile acid biosynthesis, and linoleic acid metabolism (all Pcombined < 0.05). Mass spectral features included: taurine and cholic acid in primary bile acid biosynthesis; and fumaric acid, malic acid, and citric acid in the TCA. HILIC features that differed in the meal challenge reflected linoleic acid metabolism (Pcombined < 0.05). CONCLUSIONS Energy, macronutrient, and bile acid metabolism pathways were responsive to a standardized meal challenge in adults without cardiometabolic diseases. Our findings reflect metabolic flexibility in disease-free individuals.
Collapse
Affiliation(s)
- Elaine A Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Reynaldo Martorell
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Manuel Ramirez-Zea
- Institute of Nutrition of Central America and Panama Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala
| | | |
Collapse
|
6
|
Grubic TJ, Sowinski RJ, Nevares BE, Jenkins VM, Williamson SL, Reyes AG, Rasmussen C, Greenwood M, Murano PS, Earnest CP, Kreider RB. Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: an open label, randomized, counterbalanced, crossover pilot study. J Int Soc Sports Nutr 2019; 16:34. [PMID: 31409363 PMCID: PMC6693099 DOI: 10.1186/s12970-019-0301-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We previously reported that consuming a food bar (FB) containing whey protein and the plant fiber isomalto-oligosaccharides [IMO] had a lower glycemic (GI) but similar insulinemic response as a high GI carbohydrate. Therefore, we hypothesized that ingestion of this FB before, during, and following intense exercise would better maintain glucose homeostasis and performance while hastening recovery in comparison to the common practice of ingesting carbohydrate alone. METHODS Twelve resistance-trained males participated in an open label, randomized, counterbalanced, crossover trial with a 7-d washout period. Participants consumed a carbohydrate matched dextrose comparitor (CHO) or a FB containing 20 g of whey, 25 g of IMO, and 7 g of fat 30-min before, mid-way, and following intense exercise. Participants performed 11 resistance-exercises (3 sets of 10 repetitions at 70% of 1RM) followed by agility and sprint conditioning drills for time. Participants donated blood to assess catabolic and inflammatory markers, performed isokinetic strength tests, and rated perceptions of muscle soreness, hypoglycemia before, and following exercise and after 48 h of recovery. Data were analyzed using general linear models (GLM) for repeated measures and mean changes from baseline with 95% confidence intervals (CI) with a one-way analysis of variance. Data are reported as mean change from baseline with 95% CI. RESULTS GLM analysis demonstrated that blood glucose was significantly higher 30-min post-ingestion for CHO (3.1 [2.0, 4.3 mmol/L,] and FB (0.8 [0.2, 1.5, mmol/L, p = 0.001) while the post-exercise ratio of insulin to glucose was greater with FB (CHO 0.04 [0.00, 0.08], FB 0.11 [0.07, 0.15], p = 0.013, η2 = 0.25). GLM analysis revealed no significant interaction effects between treatments in lifting volume of each resistance-exercise or total lifting volume. However, analysis of mean changes from baseline with 95% CI's revealed that leg press lifting volume (CHO -130.79 [- 235.02, - 26.55]; FB -7.94 [- 112.17, 96.30] kg, p = 0.09, η2 = 0.12) and total lifting volume (CHO -198.26 [- 320.1, - 76.4], FB -81.7 [- 203.6, 40.1] kg, p = 0.175, η2 = 0.08) from set 1 to 3 was significantly reduced for CHO, but not for the FB. No significant interaction effects were observed in ratings of muscle soreness. However, mean change analysis revealed that ratings of soreness of the distal vastus medialis significantly increased from baseline with CHO while being unchanged with FB (CHO 1.88 [0.60, 3.17]; FB 0.29 [- 0.99, 1.57] cm, p = 0.083, η2 = 0.13). No significant GLM interaction or mean change analysis effects were seen between treatments in sprint performance, isokinetic strength, markers of catabolism, stress and sex hormones, or inflammatory markers. CONCLUSION Pilot study results provide some evidence that ingestion of this FB can positively affect glucose homeostasis, help maintain workout performance, and lessen perceptions of muscle soreness. TRIAL REGISTRATION clinicaltrials.gov, # NCT03704337 . Retrospectively registered 12, July 2018.
Collapse
Affiliation(s)
- Tyler J Grubic
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Ryan J Sowinski
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Ben E Nevares
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Victoria M Jenkins
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Susannah L Williamson
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Aimee G Reyes
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.,Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Christopher Rasmussen
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Mike Greenwood
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Peter S Murano
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Conrad P Earnest
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4243, USA.
| |
Collapse
|
7
|
Lim SH, Kim MJ, Lee J. Intake of psyllium seed husk reduces white matter damage in a rat model of chronic cerebral hypoperfusion. Nutr Res 2019; 67:27-39. [DOI: 10.1016/j.nutres.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 01/12/2023]
|
8
|
Schlicker L, Boers HM, Dudek CA, Zhao G, Barua A, Trezzi JP, Meyer-Hermann M, Jacobs DM, Hiller K. Postprandial Metabolic Effects of Fiber Mixes Revealed by in vivo Stable Isotope Labeling in Humans. Metabolites 2019; 9:metabo9050091. [PMID: 31067731 PMCID: PMC6571904 DOI: 10.3390/metabo9050091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022] Open
Abstract
Food supplementation with a fiber mix of guar gum and chickpea flour represents a promising approach to reduce the risk of type 2 diabetes mellitus (T2DM) by attenuating postprandial glycemia. To investigate the effects on postprandial metabolic fluxes of glucose-derived metabolites in response to this fiber mix, a randomized, cross-over study was designed. Twelve healthy, male subjects consumed three different flatbreads either supplemented with 2% guar gum or 4% guar gum and 15% chickpea flour or without supplementation (control). The flatbreads were enriched with ~2% of 13C-labeled wheat flour. Blood was collected at 16 intervals over a period of 360 min after bread intake and plasma samples were analyzed by GC-MS based metabolite profiling combined with stable isotope-assisted metabolomics. Although metabolite levels of the downstream metabolites of glucose, specifically lactate and alanine, were not altered in response to the fiber mix, supplementation of 4% guar gum was shown to significantly delay and reduce the exogenous formation of these metabolites. Metabolic modeling and computation of appearance rates revealed that the effects induced by the fiber mix were strongest for glucose and attenuated downstream of glucose. Further investigations to explore the potential of fiber mix supplementation to counteract the development of metabolic diseases are warranted.
Collapse
Affiliation(s)
- Lisa Schlicker
- Department for Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| | - Hanny M Boers
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | - Christian-Alexander Dudek
- Department for Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| | - Gang Zhao
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany.
- Centre for Individualised Infection Medicine (CIIM), Feodor-Lynen-Straße 15, 30625 Hannover, Germany.
| | - Arnab Barua
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany.
- Centre for Individualised Infection Medicine (CIIM), Feodor-Lynen-Straße 15, 30625 Hannover, Germany.
| | - Jean-Pierre Trezzi
- Integrated Biobank of Luxembourg, Luxembourg Institute of Health, 1 rue Louis Rech, 3555 Dudelange, Luxembourg.
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, 7 avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Rebenring 56, 38106 Braunschweig, Germany.
- Centre for Individualised Infection Medicine (CIIM), Feodor-Lynen-Straße 15, 30625 Hannover, Germany.
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
| | - Doris M Jacobs
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands.
| | - Karsten Hiller
- Department for Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
9
|
Chen Z, Li S, Fu Y, Li C, Chen D, Chen H. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Shang W, Si X, Zhou Z, Strappe P, Blanchard C. Wheat bran with enriched gamma-aminobutyric acid attenuates glucose intolerance and hyperinsulinemia induced by a high-fat diet. Food Funct 2018; 9:2820-2828. [PMID: 29693103 DOI: 10.1039/c8fo00331a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, the level of gamma-aminobutyric acid (GABA) in wheat bran was increased to be six times higher through the action of endogenous glutamate decarboxylase compared with untreated bran. The process of GABA formation in wheat bran also led to an increased level of phenolic compounds with enhanced antioxidant capacity 2 times higher than the untreated status. The interventional effect of a diet containing GABA-enriched bran on hyperinsulinemia induced by a high-fat diet (HFD) was investigated in a rat model. The results showed that, when compared with animals fed with HFD-containing untreated bran (NB group), the consumption of HFD-containing GABA-enriched bran (GB group) demonstrated a greater improvement of insulin resistance/sensitivity as revealed by the changes in the homeostatic model assessment for insulin resistance index (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI). The expression of hepatic genes, cytochrome P450 family 7 subfamily A member 1 (Cyp7a1) and ubiquitin C (Ubc), which are involved in the adipogenesis-associated PPAR signalling pathway, was found to be significantly down-regulated in the GB group compared with the HFD group (P = 0.0055). Meanwhile, changes in the expression of a number of genes associated with lipid metabolism and gluconeogenesis were also noted in the GB group versus the HFD group, but not in the NB group, indicating different regulatory patterns between the two brans in a high-fat diet. More importantly, the analysis of key genes related to glucose metabolism further revealed that the expression of insulin-induced gene 1/2 (Insig-1/2) was increased following GB intervention with a corresponding reduction in phosphoenolpyruvate carboxykinase 1 (Pepck) and glucose-6-phosphatase, catalytic subunit (G6pc) expression, suggesting that glucose homeostasis is greatly improved through the intervention of GABA-enriched bran in the context of a high-fat diet.
Collapse
Affiliation(s)
- Wenting Shang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
11
|
Abstract
AbstractThe absence of a dedicated transport for disaccharides in the intestine implicates that the metabolic use of dietary lactose relies on its prior hydrolysis at the intestinal brush border. Consequently, lactose in blood or urine has mostly been associated with specific cases in which the gastrointestinal barrier is damaged. On the other hand, lactose appears in the blood of lactating women and has been detected in the blood and urine of healthy men, indicating that the presence of lactose in the circulation of healthy subjects is not incompatible with normal physiology. In this cross-over study we have characterised the postprandial kinetics of lactose, and its major constituent, galactose, in the serum of fourteen healthy men who consumed a unique dose of 800 g milk or yogurt. Genetic testing for lactase persistence and microbiota profiling of the subjects were also performed. Data revealed that lactose does appear in serum after dairy intake, although with delayed kinetics compared with galactose. Median serum concentrations of approximately 0·02 mmol/l lactose and approximately 0·2 mmol/l galactose were observed after the ingestion of milk and yogurt respectively. The serum concentrations of lactose were inversely correlated with the concentrations of galactose, and the variability observed between the subjects’ responses could not be explained by the presence of the lactase persistence allele. Finally, lactose levels have been associated with the abundance of theVeillonellagenus in faecal microbiota. The measurement of systemic lactose following dietary intake could provide information about lactose metabolism and nutrient transport processes under normal or pathological conditions.
Collapse
|
12
|
Effect of fibre additions to flatbread flour mixes on glucose kinetics: a randomised controlled trial. Br J Nutr 2017; 118:777-787. [PMID: 29110741 DOI: 10.1017/s0007114517002781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously found that guar gum (GG) and chickpea flour (CPF) added to flatbread wheat flour lowered postprandial blood glucose (PPG) and insulin responses dose dependently. However, rates of glucose influx cannot be determined from PPG, which integrates rates of influx, tissue disposal and hepatic glucose production. The objective was to quantify rates of glucose influx and related fluxes as contributors to changes in PPG with GG and CPF additions to wheat-based flatbreads. In a randomised cross-over design, twelve healthy males consumed each of three different 13C-enriched meals: control flatbreads (C), or C incorporating 15 % CPF with either 2 % (GG2) or 4 % (GG4) GG. A dual isotope technique was used to determine the time to reach 50 % absorption of exogenous glucose (T 50 %abs, primary objective), rate of appearance of exogenous glucose (RaE), rate of appearance of total glucose (RaT), endogenous glucose production (EGP) and rate of disappearance of total glucose (RdT). Additional exploratory outcomes included PPG, insulin, glucose-dependent insulinotropic peptide and glucagon-like peptide 1, which were additionally measured over 4 h. Compared with C, GG2 and GG4 had no significant effect on T 50 %abs. However, GG4 significantly reduced 4-h AUC values for RaE, RaT, RdT and EGP, by 11, 14, 14 and 64 %, respectively, whereas GG2 showed minor effects. Effect sizes over 2 and 4 h were similar except for significantly greater reduction in EGP for GG4 at 2 h. In conclusion, a soluble fibre mix added to flatbreads only slightly reduced rates of glucose influx, but more substantially affected rates of postprandial disposal and hepatic glucose production.
Collapse
|
13
|
Pantophlet AJ, Roelofsen H, de Vries MP, Gerrits WJJ, van den Borne JJGC, Vonk RJ. The use of metabolic profiling to identify insulin resistance in veal calves. PLoS One 2017; 12:e0179612. [PMID: 28617863 PMCID: PMC5472311 DOI: 10.1371/journal.pone.0179612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022] Open
Abstract
Heavy veal calves (4–6 months old) are at risk of developing insulin resistance and disturbed glucose homeostasis. Prolonged insulin resistance could lead to metabolic disorders and impaired growth performance. Recently, we discovered that heavy Holstein-Friesian calves raised on a high-lactose or high-fat diet did not differ in insulin sensitivity, that insulin sensitivity was low and 50% of the calves could be considered insulin resistant. Understanding the patho-physiological mechanisms underlying insulin resistance and discovering biomarkers for early diagnosis would be useful for developing prevention strategies. Therefore, we explored plasma metabolic profiling techniques to build models and discover potential biomarkers and pathways that can distinguish between insulin resistant and moderately insulin sensitive veal calves. The calves (n = 14) were classified as insulin resistant (IR) or moderately insulin sensitive (MIS) based on results from a euglycemic-hyperinsulinemic clamp, using a cut-off value (M/I-value <4.4) to identify insulin resistance. Metabolic profiles of fasting plasma samples were analyzed using reversed phase (RP) and hydrophilic interaction (HILIC) liquid chromatography–mass spectrometry (LC-MS). Orthogonal partial least square discriminant analysis was performed to compare metabolic profiles. Insulin sensitivity was on average 2.3x higher (P <0.001) in MIS than IR group. For both RP-LC-MS and HILIC-LC-MS satisfactory models were build (R2Y >90% and Q2Y >66%), which allowed discrimination between MIS and IR calves. A total of 7 and 20 metabolic features (for RP-LC-MS and HILIC-LC-MS respectively) were most responsible for group separation. Of these, 7 metabolites could putatively be identified that differed (P <0.05) between groups (potential biomarkers). Pathway analysis indicated disturbances in glycerophospholipid and sphingolipid metabolism, the glycine, serine and threonine metabolism, and primary bile acid biosynthesis. These results demonstrate that plasma metabolic profiling can be used to identify insulin resistance in veal calves and can lead to underlying mechanisms.
Collapse
Affiliation(s)
- Andre J Pantophlet
- Department of Pediatrics; Center for Liver, Digestive and Metabolic Diseases, University Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Han Roelofsen
- Medical Biomics, University Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marcel P de Vries
- Department of Pediatrics; Center for Liver, Digestive and Metabolic Diseases, University Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Medical Biomics, University Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | | | - Roel J Vonk
- Medical Biomics, University Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|