1
|
Andrich DE, Melbouci L, Ou Y, Auclair N, Mercier J, Grenier JC, Lira FS, Barreiro LB, Danialou G, Comtois AS, Lavoie JC, St-Pierre DH. A Short-Term High-Fat Diet Alters Glutathione Levels and IL-6 Gene Expression in Oxidative Skeletal Muscles of Young Rats. Front Physiol 2019; 10:372. [PMID: 31024337 PMCID: PMC6468044 DOI: 10.3389/fphys.2019.00372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 01/03/2023] Open
Abstract
Obesity and ensuing disorders are increasingly prevalent worldwide. High-fat diets (HFD) and diet-induced obesity have been shown to induce oxidative stress and inflammation while altering metabolic homeostasis in many organs, including the skeletal muscle. We previously observed that 14 days of HFD impairs contractile functions of the soleus (SOL) oxidative skeletal muscle. However, the mechanisms underlying these effects are not clarified. In order to determine the effects of a short-term HFD on skeletal muscle glutathione metabolism, young male Wistar rats (100–125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Reduced (GSH) and disulfide (GSSG) glutathione levels were measured in the SOL. The expression of genes involved in the regulation of glutathione metabolism, oxidative stress, antioxidant defense and inflammation were measured by RNA-Seq. We observed a significant 25% decrease of GSH levels in the SOL muscle. Levels of GSSG and the GSH:GSSG ratio were similar in both groups. Further, we observed a 4.5 fold increase in the expression of pro-inflammatory cytokine interleukin 6 (IL-6) but not of other cytokines or markers of inflammation and oxidative stress. We hereby demonstrate that a short-term HFD significantly lowers SOL muscle GSH levels. This effect could be mediated through the increased expression of IL-6. Further, the skeletal muscle antioxidant defense could be impaired under cellular stress. We surmise that these early alterations could contribute to HFD-induced insulin resistance observed in longer protocols.
Collapse
Affiliation(s)
- David E Andrich
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Lilya Melbouci
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Ya Ou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Nickolas Auclair
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Jocelyne Mercier
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Fábio Santos Lira
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Luis B Barreiro
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Gawiyou Danialou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Royal Military College Saint-Jean, Saint-Jean-sur-Richelieu, QC, Canada
| | - Alain-Steve Comtois
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
2
|
Schilder RJ, Stewart H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. ACTA ACUST UNITED AC 2019; 222:jeb.188508. [PMID: 30659084 DOI: 10.1242/jeb.188508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
We previously demonstrated the existence of a naturally occurring metabolic disease phenotype in Libellula pulchella dragonflies that shows high similarity to vertebrate obesity and type II diabetes, and is caused by a protozoan gut parasite. To further mechanistic understanding of how this metabolic disease phenotype affects fitness of male L. pulchella in vivo, we examined infection effects on in situ muscle performance and molecular traits relevant to dragonfly flight performance in nature. Importantly, these traits were previously shown to be affected in obese vertebrates. Similarly to obesity effects in rat skeletal muscle, dragonfly gut infection caused a disruption of relationships between body mass, flight muscle power output and alternative pre-mRNA splicing of troponin T, which affects muscle calcium sensitivity and performance in insects and vertebrates. In addition, when simulated in situ to contract at cycle frequencies ranging from 20 to 45 Hz, flight muscles of infected individuals displayed a left shift in power-cycle frequency curves, indicating a significant reduction in their optimal cycle frequency. Interestingly, these power-cycle curves were similar to those produced by flight muscles of non-infected teneral (i.e. physiologically immature) adult L. pulchella males. Overall, our results indicate that the effects of metabolic disease on skeletal muscle physiology in natural insect systems are similar to those observed in vertebrates maintained in laboratory settings. More generally, they indicate that study of natural, host-parasite interactions can contribute important insight into how environmental factors other than diet and exercise may contribute to the development of metabolic disease phenotypes.
Collapse
Affiliation(s)
- Rudolf J Schilder
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA .,Pennsylvania State University, Department of Biology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| | - Hannah Stewart
- Pennsylvania State University, Department of Entomology, 501 Ag Sciences & Industries Building, State College, PA 16802, USA
| |
Collapse
|
3
|
Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019; 10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.
Collapse
Affiliation(s)
- Emma R Hinkle
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Hannah J Wiedner
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Adam J Black
- b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Jimena Giudice
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , USA
| |
Collapse
|
4
|
Black AJ, Schilder RJ, Kimball SR. Palmitate- and C6 ceramide-induced Tnnt3 pre-mRNA alternative splicing occurs in a PP2A dependent manner. Nutr Metab (Lond) 2018; 15:87. [PMID: 30564278 PMCID: PMC6296074 DOI: 10.1186/s12986-018-0326-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
Background In a previous study, we showed that consumption of diets enriched in saturated fatty acids causes changes in alternative splicing of pre-mRNAs encoding a number of proteins in rat skeletal muscle, including the one encoding skeletal muscle Troponin T (Tnnt3). However, whether saturated fatty acids act directly on muscle cells to modulate alternative pre-mRNA splicing was not assessed. Moreover, the signaling pathway through which saturated fatty acids act to promote changes in alternative splicing is unknown. Therefore, the objective of the present study was to characterize the signaling pathway through which saturated fatty acids act to modulate Tnnt3 alternative splicing. Methods The effects of treatment of L6 myotubes with saturated (palmitate), mono- (oleate), or polyunsaturated (linoleate) fatty acids on alternative splicing of pre-mRNA was assessed using Tnnt3 as a marker gene. Results Palmitate treatment caused a two-fold change (p < 0.05) in L6 myotube Tnnt3 alternative splicing whereas treatment with either oleate or linoleate had minimal effects compared to control myotubes. Treatment with a downstream metabolite of palmitate, ceramide, had effects similar to palmitate on Tnnt3 alternative splicing and inhibition of de novo ceramide biosynthesis blocked the palmitate-induced alternative splicing changes. The effects of palmitate and ceramide on Tnnt3 alternative splicing were accompanied by a 40–50% reduction in phosphorylation of Akt on S473. However, inhibition of de novo ceramide biosynthesis did not prevent palmitate-induced Akt dephosphorylation, suggesting that palmitate may act in an Akt-independent manner to modulate Tnnt3 alternative splicing. Instead, pre-treatment with okadaic acid at concentrations that selectively inhibit protein phosphatase 2A (PP2A) blocked both palmitate- and ceramide-induced changes in Tnnt3 alternative splicing, suggesting that palmitate and ceramide act through PP2A to modulate Tnnt3 alternative splicing. Conclusions Overall, the data show that fatty acid saturation level and ceramides are important factors modulating alternative pre-mRNA splicing through activation of PP2A. Electronic supplementary material The online version of this article (10.1186/s12986-018-0326-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam J Black
- 1Department of Cellular and Molecular Physiology, Penn State College of Medicine, H166, 500 University Drive, Hershey, PA 17033 USA.,Present Address: Department of Cell Biology and Physiology, 6330 Medical Biomolecular Research Building, 111 Mason Farm Rd, Chapel Hill, NC 27599 USA
| | - Rudolf J Schilder
- 3Department of Entomology and Biology, Penn State University, University Park, PA USA
| | - Scot R Kimball
- 1Department of Cellular and Molecular Physiology, Penn State College of Medicine, H166, 500 University Drive, Hershey, PA 17033 USA
| |
Collapse
|