1
|
Kasdekar N, Spieker MR, Crich D. Practical Synthesis from Streptomycin and Regioselective Partial Deprotections of (-)-(1 R,2 S,3 R,4 R,5 S,6 S)-1,3-Di(deamino)-1,3-diazido-2,5,6-tri- O-benzylstreptamine. J Org Chem 2024; 89:4225-4231. [PMID: 38427951 PMCID: PMC10949228 DOI: 10.1021/acs.joc.3c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
We describe the gram-scale synthesis of (-)-(1R,2S,3R,4R,5S,6S)-1,3-di(diamino)-1,3-diazido-2,5,6-tri-O-benzylstreptamine from streptomycin by (i) hydrolysis of the two streptomycin guanidine residues, (ii) reprotection of the amines as azides, (iii) protection of all alcohols as benzyl ethers, and (iv) glycosidic bond cleavage with HCl in methanol. Protocols for regioselective monodebenzylation and regioselective reduction of a single azide in the product are also described, providing four optically pure building blocks for exploitation in novel aminoglycoside synthesis.
Collapse
Affiliation(s)
- Niteshlal Kasdekar
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Michael R. Spieker
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 120 East Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Webster CM, Shepherd M. A mini-review: environmental and metabolic factors affecting aminoglycoside efficacy. World J Microbiol Biotechnol 2023; 39:7. [PMID: 36350431 PMCID: PMC9646598 DOI: 10.1007/s11274-022-03445-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Following the discovery of streptomycin from Streptomyces griseus in the 1940s by Selman Waksman and colleagues, aminoglycosides were first used to treat tuberculosis and then numerous derivatives have since been used to combat a wide variety of bacterial infections. These bactericidal antibiotics were used as first-line treatments for several decades but were largely replaced by ß-lactams and fluoroquinolones in the 1980s, although widespread emergence of antibiotic-resistance has led to renewed interest in aminoglycosides. The primary site of action for aminoglycosides is the 30 S ribosomal subunit where they disrupt protein translation, which contributes to widespread cellular damage through a number of secondary effects including rapid uptake of aminoglycosides via elevated proton-motive force (PMF), membrane damage and breakdown, oxidative stress, and hyperpolarisation of the membrane. Several factors associated with aminoglycoside entry have been shown to impact upon bacterial killing, and more recent work has revealed a complex relationship between metabolic states and the efficacy of different aminoglycosides. Hence, it is imperative to consider the environmental conditions and bacterial physiology and how this can impact upon aminoglycoside entry and potency. This mini-review seeks to discuss recent advances in this area and how this might affect the future use of aminoglycosides.
Collapse
Affiliation(s)
- Calum M Webster
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mark Shepherd
- School of Biosciences, RAPID Group, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
3
|
Ohashi T, Fujita Y, Irisawa H, Nakaminami H, Arai T, Takahashi M, Momiyama E, Murata N, Murayama K, Saito T. Clinical Efficacy and Safety of Arbekacin against Pneumonia in Febrile Neutropenia: A Retrospective Study in Patients with Hematologic Malignancies. Infect Chemother 2022; 54:80-90. [PMID: 35384420 PMCID: PMC8987186 DOI: 10.3947/ic.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/19/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Takashi Ohashi
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Yukiyoshi Fujita
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Hiroyuki Irisawa
- Department of Hematology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takahiro Arai
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Masumi Takahashi
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Emi Momiyama
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Naoya Murata
- Department of Hematology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Kayoko Murayama
- Department of Hematology, Gunma Prefectural Cancer Center, Gunma, Japan
| | - Taeko Saito
- Division of Pharmacy, Gunma Prefectural Cancer Center, Gunma, Japan
| |
Collapse
|
4
|
Rout UK, Sanket AS, Sisodia BS, Mohapatra PK, Pati S, Kant R, Dwivedi GR. A Comparative Review on Current and Future Drug Targets Against Bacteria & Malaria. Curr Drug Targets 2021; 21:736-775. [PMID: 31995004 DOI: 10.2174/1389450121666200129103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 11/22/2022]
Abstract
Long before the discovery of drugs like 'antibiotic and anti-parasitic drugs', the infectious diseases caused by pathogenic bacteria and parasites remain as one of the major causes of morbidity and mortality in developing and underdeveloped countries. The phenomenon by which the organism exerts resistance against two or more structurally unrelated drugs is called multidrug resistance (MDR) and its emergence has further complicated the treatment scenario of infectious diseases. Resistance towards the available set of treatment options and poor pipeline of novel drug development puts an alarming situation. A universal goal in the post-genomic era is to identify novel targets/drugs for various life-threatening diseases caused by such pathogens. This review is conceptualized in the backdrop of drug resistance in two major pathogens i.e. "Pseudomonas aeruginosa" and "Plasmodium falciparum". In this review, the available targets and key mechanisms of resistance of these pathogens have been discussed in detail. An attempt has also been made to analyze the common drug targets of bacteria and malaria parasite to overcome the current drug resistance scenario. The solution is also hypothesized in terms of a present pipeline of drugs and efforts made by scientific community.
Collapse
Affiliation(s)
- Usha K Rout
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | | | - Brijesh S Sisodia
- Regional Ayurveda Research Institute for Drug Development, Gwalior-474 009, India
| | | | - Sanghamitra Pati
- Microbiology Department, ICMR-Regional Medical Research Centre, Bhubaneswar-751023, India
| | - Rajni Kant
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| | - Gaurav R Dwivedi
- ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh- 273013, India
| |
Collapse
|
5
|
Baby K, Maity S, Mehta CH, Suresh A, Nayak UY, Nayak Y. SARS-CoV-2 entry inhibitors by dual targeting TMPRSS2 and ACE2: An in silico drug repurposing study. Eur J Pharmacol 2021; 896:173922. [PMID: 33539819 PMCID: PMC8060391 DOI: 10.1016/j.ejphar.2021.173922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called “entry inhibitors.” For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.
Collapse
Affiliation(s)
- Krishnaprasad Baby
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Swastika Maity
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India; Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Albano M, Fleischmann WA, Greenwood-Quaintance KE, Patel R. In vitro activity of arbekacin against multidrug-resistant gram-negative bacilli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1118-1121. [PMID: 32962921 DOI: 10.1016/j.jmii.2020.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Arbekacin is a broad-spectrum aminoglycoside with activity against some Gram-positive and Gram-negative bacteria. METHODS Arbekacin minimum inhibitory concentration (MIC) values were determined for 296 drug-resistant Gram-negative bacilli, and compared to previously determined plazomicin, amikacin, gentamicin, and tobramycin MIC values. RESULTS The MIC values required to inhibit 50% and 90% of isolates (MIC50 and MIC90, respectively) were 16 and >128 μg/ml, respectively. CONCLUSIONS Arbekacin showed similar MIC50 values to amikacin and gentamicin, a lower MIC50 value than tobramycin, and a higher MIC50 value than plazomicin.
Collapse
Affiliation(s)
- Mariana Albano
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Wim Alexander Fleischmann
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Paracelsus Medical University, Salzburg, Austria
| | | | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Gould IM, Gunasekera C, Khan A. Antibacterials in the pipeline and perspectives for the near future. Curr Opin Pharmacol 2019; 48:69-75. [PMID: 31200170 DOI: 10.1016/j.coph.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/17/2019] [Accepted: 05/04/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance is a global threat to the management of infections in our patients. Sound stewardship of antibacterial agents at our disposal must be accompanied by a concerted effort to develop new agents to bolster our armamentarium. This review will cover the latest antibiotics that have come through the pipeline and the role they can play in the management of infections that are increasingly difficult to treat due to resistance mechanisms.
Collapse
Affiliation(s)
- Ian M Gould
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Aberdeen, Aberdeen, United Kingdom
| | - Chathuri Gunasekera
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom; University of Colombo, Colombo, Sri Lanka.
| | - Ali Khan
- Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, United Kingdom
| |
Collapse
|
8
|
Discovery of 2-hydroxyarbekacin, a new aminoglycoside antibiotic with reduced nephrotoxicity. J Antibiot (Tokyo) 2017; 71:345-347. [DOI: 10.1038/ja.2017.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|