1
|
Rox K, Medina E. Aerosolized delivery of ESKAPE pathogens for murine pneumonia models. Sci Rep 2024; 14:2558. [PMID: 38297183 PMCID: PMC10830452 DOI: 10.1038/s41598-024-52958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Murine pneumonia models for ESKAPE pathogens serve to evaluate novel antibacterials or to investigate immunological responses. The majority of published models uses intranasal or to a limited extent the intratracheal instillation to challenge animals. In this study, we propose the aerosol delivery of pathogens using a nebulizer. Aerosol delivery typically results in homogeneous distribution of the inoculum in the lungs because of lower particle size. This is of particular importance when compounds are assessed for their pharmacokinetic and pharmacodynamic (PK/PD) relationships as it allows to conduct several analysis with the same sample material. Moreover, aerosol delivery has the advantage that it mimics the 'natural route' of respiratory infection. In this short and concise study, we show that aerosol delivery of pathogens resulted in a sustained bacterial burden in the neutropenic lung infection model for five pathogens tested, whereas it gave a similar result in immunocompetent mice for three out of five pathogens. Moreover, a substantial bacterial burden in the lungs was already achieved 2 h post inhalation. Hence, this study constitutes a viable alternative for intranasal administration and a refinement of murine pneumonia models for PK/PD assessments of novel antibacterial compounds allowing to study multiple readouts with the same sample material.
Collapse
Affiliation(s)
- Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany.
| | - Eva Medina
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124, Braunschweig, Germany
- Infection Immunology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124, Braunschweig, Germany
| |
Collapse
|
2
|
Nichols WW, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: in vivo translational biology and pharmacokinetics/pharmacodynamics (PK/PD). J Antimicrob Chemother 2022; 77:2341-2352. [PMID: 35660869 DOI: 10.1093/jac/dkac172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review describes the translational in vivo and non-clinical pharmacokinetics/pharmacodynamics (PK/PD) research that supported clinical trialling and subsequently licensing approval of ceftazidime/avibactam, a new β-lactam/β-lactamase inhibitor combination aimed at the treatment of infections by Enterobacterales and Pseudomonas aeruginosa. The review thematically follows on from the co-published article, Nichols et al. (J Antimicrob Chemother 2022; dkac171). Avibactam protected ceftazidime in animal models of infection with ceftazidime-resistant, β-lactamase-producing bacteria. For example, a single subcutaneous dose of ceftazidime at 1024 mg/kg yielded little effect on the growth of ceftazidime-resistant, blaKPC-2-carrying Klebsiella pneumoniae in the thighs of neutropenic mice (final counts of 4 × 108 to 8 × 108 cfu/thigh). In contrast, co-administration of avibactam in a 4:1 ratio (ceftazidime:avibactam) was bactericidal in the same model (final counts of 2 × 104 to 3 × 104 cfu/thigh). In a rat abdominal abscess model, therapy with ceftazidime or ceftazidime/avibactam (4:1 w/w) against blaKPC-2-positive K. pneumoniae resulted in 9.3 versus 3.3 log cfu/abscess, respectively, after 52 h. With respect to PK/PD, in Monte Carlo simulations, attainment of unbound drug exposure targets (ceftazidime fT>8 mg/L and avibactam fT>1 mg/L, each for 50% of the dosing interval) for the labelled dose of ceftazidime/avibactam (2 and 0.5 g, respectively, q8h by 2 h IV infusion), including dose adjustments for patients with impaired renal function, ranged between 94.8% and 99.6% of patients, depending on the infection modelled.
Collapse
|
3
|
Mikhalchik E, Balabushevich N, Vakhrusheva T, Sokolov A, Baykova J, Rakitina D, Scherbakov P, Gusev S, Gusev A, Kharaeva Z, Bukato O, Pobeguts O. Mucin adsorbed by E. coli can affect neutrophil activation in vitro. FEBS Open Bio 2019; 10:180-196. [PMID: 31785127 PMCID: PMC6996330 DOI: 10.1002/2211-5463.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D‐PAGE, fluorescent mucin binding on a blot and HPLC‐MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu‐1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
4
|
Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infect Immun 2019; 87:IAI.00591-19. [PMID: 31405959 DOI: 10.1128/iai.00591-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine mucin has been commonly used to enhance the infectivity of bacterial pathogens, including Acinetobacter baumannii, in animal models, but the mechanisms for enhancement by mucin remain relatively unknown. In this study, using the mouse model of intraperitoneal (i.p.) mucin-enhanced A. baumannii infection, we characterized the kinetics of bacterial replication and dissemination and the host innate immune responses, as well as their potential contribution to mucin-enhanced bacterial virulence. We found that mucin, either admixed with or separately injected with the challenge bacterial inoculum, was able to enhance the tissue and blood burdens of A. baumannii strains of different virulence. Intraperitoneal injection of A. baumannii-mucin or mucin alone induced a significant but comparable reduction of peritoneal macrophages and lymphocytes, accompanied by a significant neutrophil recruitment and early interleukin-10 (IL-10) responses, suggesting that the resulting inflammatory cellular and cytokine responses were largely induced by the mucin. Depletion of peritoneal macrophages or neutralization of endogenous IL-10 activities showed no effect on the mucin-enhanced infectivity. However, pretreatment of mucin with iron chelator DIBI, but not deferoxamine, partially abolished its virulence enhancement ability, and replacement of mucin with iron significantly enhanced the bacterial burdens in the peritoneal cavity and lung. Taken together, our results favor the hypothesis that iron at least partially contributes to the mucin-enhanced infectivity of A. baumannii in this model.
Collapse
|
5
|
Deng Y, Weng X, Li Y, Su M, Wen Z, Ji X, Ren N, Shen B, Duan Y, Huang Y. Late-Stage Functionalization of Platensimycin Leading to Multiple Analogues with Improved Antibacterial Activity in Vitro and in Vivo. J Med Chem 2019; 62:6682-6693. [PMID: 31265289 PMCID: PMC6755679 DOI: 10.1021/acs.jmedchem.9b00616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial fatty acid synthases are promising antibacterial targets against multidrug-resistant pathogens. Platensimycin (PTM) is a potent FabB/FabF inhibitor, while its poor pharmacokinetics hampers the clinical development. In this study, a focused library of PTM derivatives was prepared through thiolysis of PTM oxirane (1), followed by various C-C cross-coupling reactions in high yields. Antibacterial screening of these compounds in vitro yielded multiple hits with improved anti-Staphylococcus activities over PTM. Among them, compounds A1, A3, A17, and A28 exhibited improved antibacterial activities over PTM against methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritonitis model. Compound A28 was further shown to be effective against MRSA infection in a mouse wound model, in comparison to mupirocin. Therefore, the facile preparation and screening of these PTM derivatives, together with their potent antibacterial activities in vivo, suggest a promising strategy to improve the antibacterial activity and pharmacokinetic properties of PTM.
Collapse
Affiliation(s)
- Youchao Deng
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Xiang Weng
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Yuling Li
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Meng Su
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Xinxin Ji
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
| | - Nan Ren
- Xiangya Hospital , Central South University , Changsha , Hunan 410008 , China
| | | | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery , Changsha , Hunan 410011 , China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University , Changsha , Hunan 410013 , China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery , Changsha , Hunan 410011 , China
| |
Collapse
|
6
|
Luna BM, Yan J, Reyna Z, Moon E, Nielsen TB, Reza H, Lu P, Bonomo R, Louie A, Drusano G, Bulitta J, She R, Spellberg B. Natural history of Acinetobacter baumannii infection in mice. PLoS One 2019; 14:e0219824. [PMID: 31318907 PMCID: PMC6638954 DOI: 10.1371/journal.pone.0219824] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 01/30/2023] Open
Abstract
In 2017, the WHO identified Acinetobacter baumannii as the top priority for the development of new antibiotics. Despite the need for new antibiotics, there remains a lack of well validated preclinical tools for A. baumannii. Here, we characterize and validate a mouse model for A. baumannii translational research. Antibiotic sensitivity for meropenem, amikacin, and polymyxin b was determined by the broth microdilution MIC assay. LD100 inoculums, in both blood and lung infection models, were determined in male and female C3HeB/FeJ mice that were challenged with various A. baumannii clinical isolates. Blood (blood infection model) or blood and lung tissue (lung infection model) were collected from infected mice at 2 and 18 hours and the bacterial burden was determined by quantitative culture. Blood chemistry was analyzed using the iStat system. Cytokines (IL-1ß, TNF, IL-6, and IL-10) were measured in the blood and lung homogenate by ELISA assay. Lung sections (H&E stains) were scored by a pathologist. In the blood infection model, the cytokines and physiological data indicate that mice become moribund due to sepsis (low blood pH, falling bicarbonate, and a rising base deficit), whereas mice become moribund due to respiratory failure (low blood pH, rising bicarbonate, and a falling base deficit) in the oral aspiration pneumonia model. We also characterized the timing of changes in various clinical and biomarker endpoints, which can serve as a basis for future interventional studies. Susceptibility was generally similar across gender and infection route. However, we did observe that female mice were approximately 2-fold more sensitive to LAC-4 ColR in the blood infection model. We also observed that female mice were more than 10-fold more resistant to VA-AB41 in the oral aspiration pneumonia model. These results establish parameters to follow in order to assess efficacy of novel preventative and therapeutic approaches for these infections.
Collapse
Affiliation(s)
- Brian M. Luna
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- * E-mail:
| | - Jun Yan
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Zeferino Reyna
- Department of Pathology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Eugene Moon
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Travis B. Nielsen
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Hernan Reza
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Peggy Lu
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Robert Bonomo
- Departments of Medicine, Pharmacology, and Molecular Biology and Microbiology, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Arnold Louie
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, United States of America
| | - George Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, United States of America
| | - Jürgen Bulitta
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, United States of America
| | - Rosemary She
- Department of Pathology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| | - Brad Spellberg
- Department of Medicine, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
- Department of Molecular Microbiology and Immunology, Keck School of Medicine at the University of Southern California (USC), Los Angeles, California, United States of America
| |
Collapse
|
7
|
Wang R, Lai TP, Gao P, Zhang H, Ho PL, Woo PCY, Ma G, Kao RYT, Li H, Sun H. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat Commun 2018; 9:439. [PMID: 29382822 PMCID: PMC5789847 DOI: 10.1038/s41467-018-02828-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Drug-resistant superbugs pose a huge threat to human health. Infections by Enterobacteriaceae producing metallo-β-lactamases (MBLs), e.g., New Delhi metallo-β-lactamase 1 (NDM-1) are very difficult to treat. Development of effective MBL inhibitors to revive the efficacy of existing antibiotics is highly desirable. However, such inhibitors are not clinically available till now. Here we show that an anti-Helicobacter pylori drug, colloidal bismuth subcitrate (CBS), and related Bi(III) compounds irreversibly inhibit different types of MBLs via the mechanism, with one Bi(III) displacing two Zn(II) ions as revealed by X-ray crystallography, leading to the release of Zn(II) cofactors. CBS restores meropenem (MER) efficacy against MBL-positive bacteria in vitro, and in mice infection model, importantly, also slows down the development of higher-level resistance in NDM-1-positive bacteria. This study demonstrates a high potential of Bi(III) compounds as the first broad-spectrum B1 MBL inhibitors to treat MBL-positive bacterial infection in conjunction with existing carbapenems.
Collapse
Affiliation(s)
- Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Tsz-Pui Lai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Peng Gao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongmin Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Guixing Ma
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
- The Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Sassoon Road, Pok Fu Lam, Hong Kong
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.
| |
Collapse
|