1
|
Quiroz-Aldave JE, Durand-Vásquez MDC, Chávez-Vásquez FS, Rodríguez-Angulo AN, Gonzáles-Saldaña SE, Alcalde-Loyola CC, Coronado-Arroyo JC, Zavaleta-Gutiérrez FE, Concepción-Urteaga LA, Haro-Varas JC, Concepción-Zavaleta MJ. Ifosfamide-induced nephrotoxicity in oncological patients. Expert Rev Anticancer Ther 2024; 24:5-14. [PMID: 38031874 DOI: 10.1080/14737140.2023.2290196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Ifosfamide is an alkylating chemotherapeutic agent used in the treatment of various neoplasms. Its main adverse effects include renal damage. AREAS COVERED A comprehensive review was conducted, including 100 articles from the Scielo, Scopus, and EMBASE databases. Ifosfamide-induced nephrotoxicity is attributed to its toxic metabolites, such as acrolein and chloroacetaldehyde, which cause mitochondrial damage and oxidative stress in renal tubular cells. Literature review found a 29-year average age with no gender predominance and a mortality of 13%. Currently, no fully effective strategy exists for preventing ifosfamide-induced nephrotoxicity; however, hydration, forced diuresis, and other interventions are employed to limit renal damage. Long-term renal function monitoring is essential for patients treated with ifosfamide. EXPERT OPINION Ifosfamide remains essential in neoplasm treatment, but nephrotoxicity, often compounded by coadministered drugs, poses diagnostic challenges. Preventive strategies are lacking, necessitating further research. Identifying timely risk factors can mitigate renal damage, and a multidisciplinary approach manages established nephrotoxicity. Emerging therapies may reduce ifosfamide induced nephrotoxicity.
Collapse
Affiliation(s)
- Juan Eduardo Quiroz-Aldave
- Division of Non-communicable diseases, Endocrinology research line, Hospital de Apoyo Chepén, Chepén, Perú
| | | | | | | | | | | | | | | | | | - Juan Carlos Haro-Varas
- Division of Medical Oncology, Division of Medical Oncology. Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | | |
Collapse
|
2
|
Cai MC, Cheng S, Wang X, Hu JD, Song YP, Huang YH, Yan ZX, Jiang YJ, Fang XS, Zheng XY, Dong LH, Ji MM, Wang L, Xu PP, Zhao WL. CEOP/IVE/GDP alternating regimen compared with CEOP as the first-line therapy for newly diagnosed patients with peripheral T cell lymphoma: results from a phase 2, multicenter, randomized, controlled clinical trial. Genome Med 2020; 12:41. [PMID: 32349779 PMCID: PMC7191773 DOI: 10.1186/s13073-020-00739-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/10/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP)/CHOP-like chemotherapy is widely used in peripheral T cell lymphoma (PTCL). Here we conducted a phase 2, multicenter, randomized, controlled trial, comparing the efficacy and safety of CEOP/IVE/GDP alternating regimen with CEOP in newly diagnosed PTCL. METHODS PTCL patients, except for anaplastic large cell lymphoma-anaplastic lymphoma kinase positive, were 1:1 randomly assigned to receive CEOP/IVE/GDP (CEOP, cyclophosphamide 750 mg/m2, epirubicin 70 mg/m2, vincristine 1.4 mg/m2 [maximum 2 mg] on day 1, and prednisone 60 mg/m2 [maximum 100 mg] on days 1-5 every 21 days, at the first and fourth cycle; IVE, ifosfamide 2000 mg/m2 on days 1-3, epirubicin 70 mg/m2 on day 1, and etoposide 100 mg/m2 on days 1-3 every 21 days, at the second and fifth cycle; and GDP, gemcitabine 1000 mg/m2 on days 1 and 8, cisplatin 25 mg/m2 on days 1-3, and dexamethasone 40 mg on days 1-4 every 21 days, at the third and sixth cycle) and CEOP (every 21 days for 6 cycles). Analysis of efficacy and safety was of the intent-to-treatment population. The primary endpoint was a complete response rate at the end of treatment. Meanwhile, whole exome sequencing and targeted sequencing were performed in 62 patients with available tumor samples to explore prognostic biomarkers in this cohort as an exploratory post hoc analysis. RESULTS Among 106 patients, 53 each were enrolled to CEOP/IVE/GDP and CEOP. With 51 evaluable patients each in two groups, a complete response rate of the CEOP/IVE/GDP group was similar to that of the CEOP group (37.3% vs. 31.4%, p = 0.532). There was no difference in median progression-free survival (PFS; 15.4 months vs. 9.2 months, p = 0.122) or overall survival (OS; 24.3 months vs. 21.9 months, p = 0.178). Grade 3-4 hematological and non-hematological adverse events were comparable. Histone modification genes were most frequently mutated (25/62, 40.3%), namely KMT2D, KMT2A, SETD2, EP300, and CREBBP. Multivariate analysis indicated that CREBBP and IDH2 mutations were independent factors predicting poor PFS and OS (all p < 0.001), while KMT2D predicting poor PFS (p = 0.002). CONCLUSIONS CEOP/IVE/GDP alternating regimen showed no remission or survival advantage to standard chemotherapy. Future clinical trials should aim to develop alternative regimen targeting disease biology as demonstrated by recurrent mutations in epigenetic factors. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov (NCT02533700) on August 27, 2015.
Collapse
Affiliation(s)
- Ming-Ci Cai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yong-Ping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao-Hui Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Zi-Xun Yan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Yu-Jie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Sheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiao-Yun Zheng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Li-Hua Dong
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-Meng Ji
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|