1
|
Lee SJ, Pak SW, Lee AY, Kim WI, Chae SW, Cho YK, Ko JW, Kim TW, Kim JC, Moon BC, Seo YS, Shin IS. Loranthus tanakae Franch. and Sav. Attenuates Respiratory Inflammation Caused by Asian Sand Dust. Antioxidants (Basel) 2024; 13:419. [PMID: 38671867 PMCID: PMC11047528 DOI: 10.3390/antiox13040419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Asian sand dust (ASD), generally produced in East Asia, including China, Japan, and Korea, directly leads to the development of pulmonary disease and exacerbates underlying pulmonary diseases. Loranthus tanakae Franch. and Sav. is a traditional herbal medicine applied to improve various inflammatory conditions. Here, we evaluated the curative properties of L. tanakae ethanol extract (LTE) against pulmonary inflammation caused by ASD. Additionally, to investigate the mechanism of action of LTE, we performed network pharmacological analysis. ASD was administrated on day 1, 3, and 5 by intranasal instillation, and LTE was orally administered for 6 days. Administration of LTE significantly decreased inflammatory cytokines and the number of inflammatory cells in bronchoalveolar lavage fluid, which was accompanied by a decrease in inflammatory cell accumulation in pulmonary tissue. Administration of LTE decreased the expression of cyclooxygenase2 and matrix metalloproteinase-9 in mice exposed to ASD with the decline in p65 phosphorylation. Additionally, administration of LTE significantly elevated hemeoxygenase (HO)-1 expression in the pulmonary tissue of mice exposed to ASD. These results were consistent with the data of network pharmacological analysis. This experiment showed that LTE attenuated pulmonary inflammation caused by ASD via inhibition of NF-κB and elevation of HO-1. Therefore, LTE may have potential as a therapeutic agent to treat pulmonary inflammation caused by ASD.
Collapse
Affiliation(s)
- Se-Jin Lee
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - So-Won Pak
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Woong-Il Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - Sung-Wook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Chungcheongnam-do, Republic of Korea;
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 53212, Jeollabuk-do, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 28503, Chungbuk, Republic of Korea;
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Chungcheongnam-do, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Chungcheongnam-do, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Jong-Choon Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| | - Byeong Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
| | - Yun-Soo Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Jeollanam-do, Republic of Korea; (A.Y.L.); (B.C.M.)
- Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology (KIT), 30 Baekhak1-gil, Jeongeup-si 53212, Jeollabuk-do, Republic of Korea
| | - In-Sik Shin
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Jeollanam-do, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (J.-C.K.)
| |
Collapse
|
2
|
Morici G, Cibella F, Cogo A, Palange P, Bonsignore MR. Respiratory Effects of Exposure to Traffic-Related Air Pollutants During Exercise. Front Public Health 2020; 8:575137. [PMID: 33425832 PMCID: PMC7793908 DOI: 10.3389/fpubh.2020.575137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Traffic-related air pollution (TRAP) is increasing worldwide. Habitual physical activity is known to prevent cardiorespiratory diseases and mortality, but whether exposure to TRAP during exercise affects respiratory health is still uncertain. Exercise causes inflammatory changes in the airways, and its interaction with the effects of TRAP or ozone might be detrimental, for both athletes exercising outdoor and urban active commuters. In this Mini-Review, we summarize the literature on the effects of exposure to TRAP and/or ozone during exercise on lung function, respiratory symptoms, performance, and biomarkers. Ozone negatively affected pulmonary function after exercise, especially after combined exposure to ozone and diesel exhaust (DE). Spirometric changes after exercise during exposure to particulate matter and ultrafine particles suggest a decrease in lung function, especially in patients with chronic obstructive pulmonary disease. Ozone frequently caused respiratory symptoms during exercise. Women showed decreased exercise performance and higher symptom prevalence than men during TRAP exposure. However, performance was analyzed in few studies. To date, research has not identified reliable biomarkers of TRAP-related lung damage useful for monitoring athletes' health, except in scarce studies on airway cells obtained by induced sputum or bronchoalveolar lavage. In conclusion, despite partly counteracted by the positive effects of habitual exercise, the negative effects of TRAP exposure to pollutants during exercise are hard to assess: outdoor exercise is a complex model, for multiple and variable exposures to air pollutants and pollutant concentrations. Further studies are needed to identify pollutant and/or time thresholds for performing safe outdoor exercise in cities.
Collapse
Affiliation(s)
- Giuseppe Morici
- Biomedicine, Neuroscience and Advanced Diagnostics Department, University of Palermo, Palermo, Italy.,Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Annalisa Cogo
- Biomedical Sport Studies Center, University of Ferrara, Ferrara, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria R Bonsignore
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|