1
|
Abdul Manap AS, Wei Tan AC, Leong WH, Yin Chia AY, Vijayabalan S, Arya A, Wong EH, Rizwan F, Bindal U, Koshy S, Madhavan P. Synergistic Effects of Curcumin and Piperine as Potent Acetylcholine and Amyloidogenic Inhibitors With Significant Neuroprotective Activity in SH-SY5Y Cells via Computational Molecular Modeling and in vitro Assay. Front Aging Neurosci 2019; 11:206. [PMID: 31507403 PMCID: PMC6718453 DOI: 10.3389/fnagi.2019.00206] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Hallmarks of Alzheimer's disease (AD) pathology include acetylcholine (ACh) deficiency and plaque deposition. Emerging studies suggest that acetylcholinesterase (AChE) may interact with amyloid β (Aβ) to promote aggregation of insoluble Aβ plaques in brains of patients. Current therapeutic options available for AD patients, such as AChE inhibitors, provide only symptomatic relief. In this study, we screened four natural compounds believed to harbor cognitive benefits-curcumin, piperine, bacoside A, and chebulinic acid. In the first section, preliminary screening through computational molecular docking simulations gauged the suitability of the compounds as novel AChE inhibitors. From here, only compounds that met the in silico selection criteria were selected for the second section through in vitro investigations, including AChE enzyme inhibition assay, 3-(4,5-dimenthylthiazol-2-yl)-2,5-dimethyltetrazolium bromide (MTT) assay, Thioflavin T (ThT) assay, and biochemical analysis via a neuronal cell line model. Of the four compounds screened, only curcumin (-9.6 kcal/mol) and piperine (-10.5 kcal/mol) showed favorable binding affinities and interactions towards AChE and were hence selected. In vitro AChE inhibition demonstrated that combination of curcumin and piperine showed greater AChE inhibition with an IC50 of 62.81 ± 0.01 μg/ml as compared to individual compounds, i.e., IC50 of curcumin at 134.5 ± 0.06 μg/ml and IC50 of piperine at 76.6 ± 0.08 μg/ml. In the SH-SY5Y cell model, this combination preserved cell viability up to 85%, indicating that the compounds protect against Aβ-induced neuronal damage (p < 0.01). Interestingly, our results also showed that curcumin and piperine achieved a synergistic effect at 35 μM with an synergism quotient (SQ) value of 1.824. Synergistic behavior indicates that the combination of these two compounds at lower concentrations may provide a better outcome than singularly used for Aβ proteins. Combined curcumin and piperine managed to inhibit aggregation (reduced ThT intensity at 0.432 a.u.; p < 0.01) as well as disaggregation (reduced ThT intensity at 0.532 a.u.; p < 0.01) of fibrillar Aβ42. Furthermore, combined curcumin and piperine reversed the Aβ-induced up-regulation of neuronal oxidative stress (p < 0.01). In conclusion, curcumin and piperine demonstrated promising neuroprotective effects, whereas bacoside A and chebulinic acid may not be suitable lead compounds. These results are hoped to advance the field of natural products research as potentially therapeutic and curative AD agents.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Amelia Cheng Wei Tan
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Weng Hhin Leong
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Farzana Rizwan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Umesh Bindal
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Shajan Koshy
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Sciences, Taylor’s University, Subang Jaya, Malaysia
| |
Collapse
|
2
|
Mhillaj E, Tarozzi A, Pruccoli L, Cuomo V, Trabace L, Mancuso C. Curcumin and Heme Oxygenase: Neuroprotection and Beyond. Int J Mol Sci 2019; 20:E2419. [PMID: 31100781 PMCID: PMC6567096 DOI: 10.3390/ijms20102419] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022] Open
Abstract
Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently considered one of the most effective nutritional antioxidants for counteracting free radical-related diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in neurodegeneration. Although its poor systemic bioavailability after oral administration and low plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative delivery formulations have been developed in order to overwhelm these limitations. This review provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore, pharmacokinetic properties and concerns about curcumin's safety profile have been addressed.
Collapse
Affiliation(s)
- Emanuela Mhillaj
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47900 Rimini, Italy.
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185 Rome, Italy.
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
3
|
Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, Kuruva CS, Bhatti JS, Kandimalla R, Vijayan M, Kumar S, Wang R, Pradeepkiran JA, Ogunmokun G, Thamarai K, Quesada K, Boles A, Reddy AP. Protective Effects of Indian Spice Curcumin Against Amyloid-β in Alzheimer's Disease. J Alzheimers Dis 2019; 61:843-866. [PMID: 29332042 DOI: 10.3233/jad-170512] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of our article is to assess the current understanding of Indian spice, curcumin, against amyloid-β (Aβ)-induced toxicity in Alzheimer's disease (AD) pathogenesis. Natural products, such as ginger, curcumin, and gingko biloba have been used as diets and dietary supplements to treat human diseases, including cancer, cardiovascular, respiratory, infectious, diabetes, obesity, metabolic syndromes, and neurological disorders. Products derived from plants are known to have protective effects, including anti-inflammatory, antioxidant, anti-arthritis, pro-healing, and boosting memory cognitive functions. In the last decade, several groups have designed and synthesized curcumin and its derivatives and extensively tested using cell and mouse models of AD. Recent research on Aβ and curcumin has revealed that curcumin prevents Aβ aggregation and crosses the blood-brain barrier, reach brain cells, and protect neurons from various toxic insults of aging and Aβ in humans. Recent research has also reported that curcumin ameliorates cognitive decline and improves synaptic functions in mouse models of AD. Further, recent groups have initiated studies on elderly individuals and patients with AD and the outcome of these studies is currently being assessed. This article highlights the beneficial effects of curcumin on AD. This article also critically assesses the current limitations of curcumin's bioavailability and urgent need for new formulations to increase its brain levels to treat patients with AD.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Studies, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Maria Manczak
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mary Catherine Grady
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Andrew Mitchell
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sahil Tonk
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Chandra Sekhar Kuruva
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jasvinder Singh Bhatti
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Biotechnology and Bioinformatics, Sri Guru Gobind Singh College, Chandigarh, India
| | - Ramesh Kandimalla
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rui Wang
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Gilbert Ogunmokun
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kavya Thamarai
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kandi Quesada
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Annette Boles
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Activation of Nrf2 Pathway Contributes to Neuroprotection by the Dietary Flavonoid Tiliroside. Mol Neurobiol 2018; 55:8103-8123. [PMID: 29508282 PMCID: PMC6132780 DOI: 10.1007/s12035-018-0975-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
Hyperactivated microglia plays a key role in regulating neuroinflammatory responses which cause damage to neurons. In recent years, substantial attention has been paid in identifying new strategies to abrogate neuroinflammation. Tiliroside, a natural dietary glycosidic flavonoid, is known to inhibit neuroinflammation. This study was aimed at investigating the molecular mechanisms involved in the inhibition of neuroinflammation and neurotoxicity by tiliroside. The effects of tiliroside on Nrf2 and SIRT1 activities in BV2 microglia and HT22 hippocampal neurons were investigated using immunoblotting and DNA binding assays. The roles of Nrf2 and SIRT1 in the anti-inflammatory activity of tiliroside were further investigated using RNA interference experiments. HT22 neuronal viability was determined by XTT, calcium influx, DNA fragmentation assays. The effect of tiliroside on MAP2 protein expression in HT22 neurons was investigated using western blotting and immunofluorescence. We also studied the impact of tiliroside on DNA fragmentation and ROS generation in APPSwe-transfected 3D neuronal stem cells. Results show that tiliroside increased protein levels of Nrf2, HO-1 and NQO1, indicating an activation of the Nrf2 protective mechanisms in the microglia. Furthermore, transfection of BV2 cells with Nrf2 siRNA resulted in the loss of anti-inflammatory activity by tiliroside. Tiliroside reduced protein levels of acetylated-NF-κB-p65, and increased SIRT1 in LPS/IFNγ-activated BV2 microglia. RNAi experiments revealed that inhibition of neuroinflammation by tiliroside was not affected by silencing SIRT1 gene. Results of neurotoxicity experiments revealed that neuroinflammation-induced toxicity, DNA fragmentation, ROS generation and calcium accumulation in HT22 neurons were significantly reduced by tiliroside treatment. In addition, the compound also protected differentiated human neural progenitor cells by blocking ROS generation and DNA fragmentation. Overall, this study has established that tiliroside protected BV2 microglia from LPS/IFNγ-induced neuroinflammation and HT22 neuronal toxicity by targeting Nrf2 antioxidant mechanisms. The compound also produced inhibition of NF-κB acetylation through activation of SIRT1, as well as increasing SIRT1 activity in mouse hippocampal neurons. Results from this study have further established the mechanisms involved in the anti-neuroinflammatory and neuroprotective activities of tiliroside.
Collapse
|
5
|
Zahed Panah M, Nikbakht M, Sajjadi SM, Rostami S, Norooznezhad AH, Kamranzadeh Fumani H, Ghavamzadeh A, Mohammadi S. Anti-Apoptotic Effects of Osteopontin via the Up-Regulation of AKT/mTOR/β-Catenin Loop in Acute Myeloid Leukemia Cells. Int J Hematol Oncol Stem Cell Res 2017; 11:148-157. [PMID: 28875010 PMCID: PMC5574411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: The conventional chemotherapeutic regimens which applied for treatment of acute myeloid leukemia (AML) mostly target tumor bulk but not leukemic stem cells (LSCs). Aberrant expression or activation of mediators such as osteopontin (OPN) or PI3K/PTEN/Akt/mTOR pathway plays a key role in making prone to develop leukemia. Preventing or treating cancer by curcumin (CUR) has been suggested recently. CUR induces apoptosis and growth inhibition through various mechanisms in leukemic cells. In present study, we tried to measure the toxic response in vitro to CUR for evaluation ofchangesin cell viability, survival and molecular-mediated resistance in primary AML cells. Materials and Methods: Isolated primary CD34+/CD38- bone marrow derived AML cells were treated with CUR, Daunorubicin (DNR) and/or their combination by MTT assay, Annexin V/PI staining, and colony-formation. The mRNA expression of OPN/AKT/mTOR/PTEN/β-catenin genes was measured by Real-Time PCR. The siRNA against OPN was applied for CUR- treated cells. Results: Growth inhibition effect of DNR increased in combination with CUR on primary CD34+/CD38- AML cells. Suppression of OPN with siRNA increased the cytotoxic effects of CUR. Likewise, OPN gene expression increased in response to CUR treatment in AML cells. AKT, mTOR, β-catenin or PTEN gene expression increased by CUR, but OPN siRNA decreased the level of mRNA expression of mentioned molecular pathway. Conclusion: The chemo-resistance of AML cells against therapy might be relevant to increasing of OPN mRNA expression and activity of other mediators including AKT, mTOR, PTEN, and β-catenin. In this context, targeting of OPN might be more impact on CD34+ AML cells.
Collapse
Affiliation(s)
- Mahdi Zahed Panah
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Sajjadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahrbano Rostami
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hosein Kamranzadeh Fumani
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|