1
|
Aad R, Dragojlov I, Vesentini S. Sericin Protein: Structure, Properties, and Applications. J Funct Biomater 2024; 15:322. [PMID: 39590526 PMCID: PMC11595228 DOI: 10.3390/jfb15110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Silk sericin, the glue protein binding fibroin fibers together, is present in the Bombyx mori silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.
Collapse
Affiliation(s)
| | | | - Simone Vesentini
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (R.A.); (I.D.)
| |
Collapse
|
2
|
Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers (Basel) 2022; 14:polym14224931. [PMID: 36433058 PMCID: PMC9699483 DOI: 10.3390/polym14224931] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Silk is a natural composite fiber composed mainly of hydrophobic fibroin and hydrophilic sericin, produced by the silkworm Bombyx mori. In the textile industry, the cocoons of B. mori are processed into silk fabric, where the sericin is substantially removed and usually discarded in wastewater. This wastewater pollutes the environment and water sources. However, sericin has been recognized as a potential biomaterial due to its biocompatibility, immunocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant and photoprotective properties. Moreover, sericin can produce hydrogels, films, sponges, foams, dressings, particles, fibers, etc., for various biomedical and pharmaceutical applications (e.g., tissue engineering, wound healing, drug delivery, cosmetics). Given the severe environmental pollution caused by the disposal of sericin and its beneficial properties, there has been growing interest in upcycling this biomaterial, which could have a strong and positive economic, social and environmental impact.
Collapse
Affiliation(s)
- Andreia S. Silva
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Elisabete C. Costa
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Sara Reis
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Spencer
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (R.C.C.); (P.C.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: (R.C.C.); (P.C.)
| |
Collapse
|
3
|
Cherng JH, Chang SJ, Chiu YK, Chiu YH, Fang TJ, Chen HC. Low Molecular Weight Sericin Enhances the In Vitro of Immunological Modulation and Cell Migration. Front Bioeng Biotechnol 2022; 10:925197. [PMID: 35928949 PMCID: PMC9343859 DOI: 10.3389/fbioe.2022.925197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/14/2022] Open
Abstract
Sericin, a waste product of the silk textile industry, has favorable physicochemical and biological properties. In this study, we extracted a low molecular weight (MW) sericin (LMW-sericin; below 10 kDa) by a performing high-temperature and high-pressure method and confirmed the MW using matrix-assisted laser desorption ionization-time of flight and liquid chromatography–mass spectrometry. Furthermore, we determined its biological effects on macrophages and human adipose stem cells (hASCs) as cell models to investigate the biocompatibility, immunomodulation behavior, and potential signaling pathway-related wound healing via analyses of gene expression of focal adhesion and human cytokines and chemokines using quantitative real-time polymerase chain reaction and cytokine assay. LMW-sericin showed good biocompatibility both in macrophages and hASCs. Macrophages cultured with 0.1 mg/ml LMW-sericin displayed an improved inflammatory response shown by the upregulation of CXCL9, IL12A, BMP7, and IL10, which developed Th1 and Th2 balance. LMW-sericin also improved the differentiation of macrophages toward the M2 phenotype by significantly enhancing the expression of Arg-1, which is conducive to the repair of the inflammatory environment. Moreover, the gene expression of hASCs showed that LMW-sericin promoted the secretion of beneficial adhesion molecules that potentially activate the gene transcription of differentiation and migration in hASCs, as well as significantly enhanced the levels of PKCβ1, RhoA, and RasGFR1 as fruitful molecules in wound healing. These findings provide insights into LMW-sericin application as a potential biomaterial for wound management.
Collapse
Affiliation(s)
- Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yaw-Kwan Chiu
- Department of Pediatrics Songshan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsiang Chiu
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- *Correspondence: Hsiang-Cheng Chen,
| |
Collapse
|
4
|
Wei ZZ, Weng YJ, Zhang YQ. Enhancing the In Vitro Biological Activity of Degraded Silk Sericin and Its Analog Metabolites. Biomolecules 2022; 12:biom12020161. [PMID: 35204662 PMCID: PMC8961581 DOI: 10.3390/biom12020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two sericins of high and low molecular weight (HS and LS) were prepared from commercial silkworm cocoon silk with a boiling water and Ca(OH)2 solution with ultrasonic treatments, respectively. This study first investigated the release concentration of the two abovementioned sericins in simulated saliva, gastric juice, and intestinal juice (pH 6.8, 2.0, and 7.4, respectively) within 10 h. The results showed that the order of sericin release rate and its amount in the simulated environment was gastric juice > saliva > intestinal juice. Second, the molecular weights of both sericin metabolites formed by in vitro enzymatic degradation were lower than 15 kDa. The α-glucosidase inhibitory activities of both sericins and their analog metabolites were positively correlated with their concentrations. The IC50 values of the HS- and LS-derived metabolites were 1.02 ± 0.12 mg/mL and 0.91 ± 0.15 mg/mL, respectively, which were five to seven times lower than those of both original sericins. The total antioxidant capacities and hydroxyl radical scavenging capacities of both metabolites were enhanced by one- to three-fold compared with HS and LS. These results indicate that both sericins, regardless of molecular size, have significantly enhanced antioxidant, superoxide free radical scavenging, and glycosidase inhibitory activities after simulated metabolism, and that LS is better than HS regardless of simulated digestion. These results confirm that sericin is important in the sustainable development and utilization of silk resources, especially the reduction in environmental pollution, and provides new ideas for the development of adjuvant treatments for diabetes and the development of foods with anti-hyperglycemic functions.
Collapse
|
5
|
Tiwari R, Tiwari G, Lahiri A, R V, Rai AK. Localized Delivery of Drugs through Medical Textiles for Treatment of Burns: A Perspective Approach. Adv Pharm Bull 2021; 11:248-260. [PMID: 33880346 PMCID: PMC8046402 DOI: 10.34172/apb.2021.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
The topical delivery offers numerous benefits, such as the ability to deliver drugs specifically on site selectively, prevents fluctuations in the levels of the drug, improved compliance, and improved self-medication capacity. Skin is the main route of the administration of the drug delivery system (DDS) and burns mainly cause skin damage. A burn is a kind of damage caused to skin and tissues by fire, ice, electrical energy, pollutants, friction, and radiation. There are three different types of burns, including superficial epidermis burns, partial-thickness dermis that stretch to the papillary and reticular dermis, and full-thickness burns that cover the dermis whole. The objective of the present review article is to focus on fabrication techniques of medical textiles, different types of polymers used for designing medicated textiles, skin burn conditions, and application of medicated textiles for treatment of burn along with other applications. Cream, ointment, and gel are the dosage forms used in burns. Intravenous fluids, wound care, assorted antibiotics, surgical and alternative medicines, burned creams and salami, dressings can be used to treat wounds. Nanofibers are nanometer-specific fibers that encapsulate drugs inside them and cure wounds. Nanofibers have all the properties that speed up wound healing. The properties are mechanical integrity, proper timing of wound addiction, temperature homeostasis facilitation and gas exchange, absorption of exudates. The nanofibers have been used in burn care and have been highly efficient and non-toxic.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Gaurav Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Akanksha Lahiri
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| | - Vadivelan R
- Department of Pharmacology, JSS College of Pharmacy, Ooty-643001, India
| | - Awani K Rai
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kalpi Road, Bhauti, Kanpur-208020, India
| |
Collapse
|
6
|
Wang HY, Zhao JG, Zhang YQ. The flavonoid-rich ethanolic extract from the green cocoon shell of silkworm has excellent antioxidation, glucosidase inhibition, and cell protective effects in vitro. Food Nutr Res 2020; 64:1637. [PMID: 32952498 PMCID: PMC7478120 DOI: 10.29219/fnr.v64.1637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/28/2023] Open
Abstract
The green cocoon shell of a novel variety of silkworm, Bombyx mori, is rich in two types of quercetin and kaempferol flavonoids. The aim of this study was to identify these flavonoids in the ethanolic extract (EE) from green cocoons and develop EE applications in healthy foods. The experimental results indicated that the amount of total amino acids in EE was 27.06%. The flavonoids in EE are presented in quercetin and kaempferol glycosides. The total amount of the two aglycones was 33.42 ± 0.08 mg/g. The IC50 values of 2,2-diphenyl-1-picrylhydrazyl (DPPH), 1,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonicacid) (ABTS), and hydroxyl radical scavenging abilities were 296.95 ± 13.24 μg/mL, 94.31 ± 9.13 μg/mL, and 9.21 ± 0.15 mg/mL, respectively. The IC50 values of the inhibitory activities of α-amylase and α-glucosidase were 37.57 ± 6.45 μg/mL and 212.69 ± 22.94 μg/mL, respectively. EE also reduced the level of reactive oxygen species (ROS) and oxidative stress in L02 cells induced by high glucose levels. It also effectively decreased the content of 8-hydroxyl deoxyguanosine (8-OHdG), nuclear factor κB (NF-κB), and tumour necrosis factor alpha (TNF-α) in cells with a good dose effect. These results clearly indicated that the flavonoid-rich EE with excellent antioxidant and glucosidase inhibition abilities significantly reduced the damage to cells caused by oxidative stress and inflammatory reactions. It is suggested that EE might serve as useful functional foods for the treatment of related diseases induced by oxidative stress such as diabetes mellitus.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
| | - Jin-Ge Zhao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Dushuhu Higher Edu. Town, Suzhou, P R China
| |
Collapse
|
7
|
Banagozar Mohammadi A, Sadigh-Eteghad S, Torbati M, Bagher Fazljou SM, Vatandoust SM, Ej Golzari S, Farajdokht F, Mahmoudi J. Identification and applications of neuroactive silk proteins: a narrative review. J Appl Biomed 2019; 17:147-156. [PMID: 34907702 DOI: 10.32725/jab.2019.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
In traditional medicine, natural silk is regarded as a cognitive enhancer and a cure for ameliorating the symptoms of heart disease, atherosclerosis, and metabolic disorders. In this review, general characteristics of both silk proteins, fibroin and sericin, extracted from silkworm Bombyx mori and their potential use in the neuronal disorders was discussed. Evidence shows that silk proteins exhibit neuroprotective effects in models of neurotoxicity. The antioxidant, neuroprotective, and acetylcholinesterase inhibitory mechanisms of silk proteins could prove promising in the treatment of neurodegenerative diseases. Owing to their excellent neurocompatibility and physicochemical properties, silk proteins have been used as scaffolds and drug delivery materials in the neuronal tissue engineering. These data support the potential of silk proteins as an effective complementary agent for central and peripheral neurological disorders.
Collapse
Affiliation(s)
- Ahad Banagozar Mohammadi
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Mohammadali Torbati
- Tabriz University of Medical Sciences, Faculty of Nutrition, Department of Food Science and Technology, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Samad Ej Golzari
- Tabriz University of Medical Sciences, Research Center for Evidence Based Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Health Management and Safety Promotion Research Institute, Road Traffic Injury Research Center, Tabriz, Iran
| | - Fereshteh Farajdokht
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Javad Mahmoudi
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| |
Collapse
|
8
|
Zhao JG, Wang HY, Wei ZG, Zhang YQ. Therapeutic effects of ethanolic extract from the green cocoon shell of silkworm Bombyx mori on type 2 diabetic mice and its hypoglycaemic mechanism. Toxicol Res (Camb) 2019; 8:407-420. [PMID: 31160974 DOI: 10.1039/c8tx00294k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus is a clinically complex disease characterized by hyperglycaemia with disturbances in carbohydrate, fat and protein metabolism. The aim of this study was to determine the therapeutic effect of ethanolic extract (EE) from the green cocoon sericin layer of silkworm Bombyx mori on mice with type 2 diabetes mellitus (T2DM) and its hypoglycaemic mechanisms. The results showed that oral EE for 7 weeks had significant ameliorative effects on all the biochemical parameters studied in vivo. The levels of oral glucose tolerance and insulin tolerance were significantly improved. The hypoglycaemic rate in the 350 mg kg-1 high dosage group was 39.38%. The levels of nuclear factor kappa B (NFκB), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) in the high dosage EE-treated group were significantly reduced, while activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were obviously increased. The islet area and the number of insulin-positive beta cells increased significantly in the high dose group. Furthermore, expression levels of insulin receptor (IR), insulin receptor substrate (IRS), phosphatidylinositide 3-kinase (PI3K), p-Akt and phospho-glycogen synthase kinase-3β (p-GSK3β) involved in insulin signalling were increased. Adenosine 5'-monophosphate-activated protein kinase (AMPK) and glucose transporter 4 (GLUT4) also were activated to regulate glucose metabolism in EE-treated groups. The levels of glucose 6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (PEPCK) decreased, while the glucokinase (GK) level increased to promote glycolysis. The results clearly indicated that oral EE, especially at a high dose, could improve the glucose metabolism of T2DM by reducing inflammatory reactions, enhancing the antioxidant capacity and insulin sensitivity, and regulating the balance between glycolysis and gluconeogenesis, which means that EE has potential ameliorative effects on T2DM mice.
Collapse
Affiliation(s)
- Jin-Ge Zhao
- Silk Biotechnology Laboratory , School of Biology and Basic Medical Sciences , Soochow University , China .
| | - Hai-Yan Wang
- Silk Biotechnology Laboratory , School of Biology and Basic Medical Sciences , Soochow University , China .
| | - Zheng-Guo Wei
- Silk Biotechnology Laboratory , School of Biology and Basic Medical Sciences , Soochow University , China .
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory , School of Biology and Basic Medical Sciences , Soochow University , China .
| |
Collapse
|
9
|
Kunz RI, Brancalhão RMC, Ribeiro LDFC, Natali MRM. Silkworm Sericin: Properties and Biomedical Applications. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8175701. [PMID: 27965981 PMCID: PMC5124675 DOI: 10.1155/2016/8175701] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/05/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Silk sericin is a natural polymer produced by silkworm, Bombyx mori, which surrounds and keeps together two fibroin filaments in silk thread used in the cocoon. The recovery and reuse of sericin usually discarded by the textile industry not only minimizes environmental issues but also has a high scientific and commercial value. The physicochemical properties of the molecule are responsible for numerous applications in biomedicine and are influenced by the extraction method and silkworm lineage, which can lead to variations in molecular weight and amino acid concentration of sericin. The presence of highly hydrophobic amino acids and its antioxidant potential make it possible for sericin to be applied in the food and cosmetic industry. The moisturizing power allows indications as a therapeutic agent for wound healing, stimulating cell proliferation, protection against ultraviolet radiation, and formulating creams and shampoos. The antioxidant activity associated with low digestibility of sericin that expands the application in the medical field, such as antitumour, antimicrobial and anti-inflammatory agent, anticoagulant, acts in colon health, improving constipation and protects the body from obesity through improved plasma lipid profile. In addition, the properties of sericin allow its application as a culture medium and cryopreservation, in tissue engineering and for drug delivery, demonstrating its effective use, as an important biomaterial.
Collapse
Affiliation(s)
- Regina Inês Kunz
- Department of Morphological Sciences, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Rose Meire Costa Brancalhão
- Center of Biological Sciences and Health, State University of Western Paraná, Rua Universitária, 2069, 85819-110 Cascavel, PR, Brazil
| | - Lucinéia de Fátima Chasko Ribeiro
- Center of Biological Sciences and Health, State University of Western Paraná, Rua Universitária, 2069, 85819-110 Cascavel, PR, Brazil
| | - Maria Raquel Marçal Natali
- Department of Morphological Sciences, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
10
|
Martínez-Abundis E, Mendez-del Villar M, Pérez-Rubio KG, Zuñiga LY, Cortez-Navarrete M, Ramírez-Rodriguez A, González-Ortiz M. Novel nutraceutic therapies for the treatment of metabolic syndrome. World J Diabetes 2016; 7:142-52. [PMID: 27076875 PMCID: PMC4824685 DOI: 10.4239/wjd.v7.i7.142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/24/2016] [Accepted: 02/14/2016] [Indexed: 02/05/2023] Open
Abstract
Nutraceutic therapies such as berberine, bitter melon, Gymnema sylvestre, Irvingia gabonensis, resveratrol and ursolic acid have been shown to help control metabolic syndrome (MetS). The effect of berberine on glucose and lipid metabolism, hypertension, obesity and MetS has been evaluated in animal models and humans. Most clinical trials involving bitter melon have been conducted to evaluate its effect on glucose metabolism; nevertheless, some studies have reported favorable effects on lipids and blood pressure although there is little information about its effect on body weight. Gymnema sylvestre helps to decrease body weight and blood sugar levels; however, there is limited information on dyslipidemia and hypertension. Clinical trials of Irvingia gabonensis have shown important effects decreasing glucose and cholesterol concentrations as well decreasing body weight. Resveratrol acts through different mechanisms to decrease blood pressure, lipids, glucose and weight, showing its effects on the population with MetS. Finally, there is evidence of positive effects with ursolic acid in in vitro and in vivo studies on glucose and lipid metabolism and on body weight and visceral fat. Therefore, a review of the beneficial effects and limitations of the above-mentioned nutraceutic therapies is presented.
Collapse
|
11
|
Zhao JG, Zhang YQ. A new estimation of the total flavonoids in silkworm cocoon sericin layer through aglycone determination by hydrolysis-assisted extraction and HPLC-DAD analysis. Food Nutr Res 2016; 60:30932. [PMID: 26979318 PMCID: PMC4793258 DOI: 10.3402/fnr.v60.30932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/03/2016] [Accepted: 02/18/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Silk sericin and a few non-protein components isolated from the cocoon layer including two silk proteins in silkworm Bombyx mori has many bioactivities. The dietary sericin possess antinatural oxidation, anticancer, antihyperlipidemic, and antidiabetic activities. The non-protein components surrounding the sericin layer involve in wax, pigments mainly meaning flavonoids, sugars, and other impurities. However, very few investigations have reported the estimation of the total flavonoids derived from the cocoon layer. The flavonoids are commonly present in their glycosylated forms and mostly exist as quercetin glycosides in the sericin layers of silkworm cocoons. OBJECTIVE The aim of this study was to find a more accurate method to estimate the level of the total flavonoids in silkworm cocoons. DESIGN An efficient procedure of hydrolysis-assisted extraction (HAE) was first established to estimate the level of the total flavonoids through the determination of their aglycones, quercetin, and kaempferol. Then, a comparison was made between traditional colorimetric method and our method. In addition, the antioxidant activities of hydrolysis-assisted extract sample were determined. RESULTS The average contents of quercetin and kaempferol were 1.98 and 0.42 mg/g in Daizo cocoon. Their recoveries were 99.56 and 99.17%. The total sum of quercetin and kaempferol was detected to be 2.40±0.07 mg/g by HAE-HPLC, while the total flavonoids (2.59±0.48 mg/g) estimated by the traditional colorimetric method were only equivalent to 1.28±0.04 mg/g of quercetin. The HAE sample also exhibits that IC50 values of scavenging ability of diphenyl picryl hydrazinyl (DPPH) radical and hydroxyl radical (HO·) are 243.63 µg/mL and 4.89 mg/mL, respectively. CONCLUSIONS These results show that the HAE-HPLC method is specificity of cocoon and far superior to the colorimetric method. Therefore, this study has profound significance for the comprehensive utilization of silkworm cocoon and also may be applied to the estimation of total flavonoids in other functional foods.
Collapse
Affiliation(s)
- Jin-Ge Zhao
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| |
Collapse
|