1
|
Navarro KM, Clark KA, Hardt DJ, Reid CE, Lahm PW, Domitrovich JW, Butler CR, Balmes JR. Wildland firefighter exposure to smoke and COVID-19: A new risk on the fire line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144296. [PMID: 33341613 PMCID: PMC7962897 DOI: 10.1016/j.scitotenv.2020.144296] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 05/19/2023]
Abstract
Throughout the United States, wildland firefighters respond to wildfires, performing arduous work in remote locations. Wildfire incidents can be an ideal environment for the transmission of infectious diseases, particularly for wildland firefighters who congregate in work and living settings. In this review, we examine how exposure to wildfire smoke can contribute to an increased likelihood of SARS-CoV-2 infection and severity of coronavirus disease (COVID-19). Human exposure to particulate matter (PM), a component of wildfire smoke, has been associated with oxidative stress and inflammatory responses; increasing the likelihood for adverse respiratory symptomology and pathology. In multiple epidemiological studies, wildfire smoke exposure has been associated with acute lower respiratory infections, such as bronchitis and pneumonia. Co-occurrence of SARS-CoV-2 infection and wildfire smoke inhalation may present an increased risk for COVID-19 illness in wildland firefighters due to PM based transport of SARS CoV-2 virus and up-regulation of angiotensin-converting enzyme II (ACE-2) (i.e. ACE-2 functions as a trans-membrane receptor, allowing the SARS-CoV-2 virus to gain entry into the epithelial cell). Wildfire smoke exposure may also increase risk for more severe COVID-19 illness such as cytokine release syndrome, hypotension, and acute respiratory distress syndrome (ARDS). Current infection control measures, including social distancing, wearing cloth masks, frequent cleaning and disinfecting of surfaces, frequent hand washing, and daily screening for COVID-19 symptoms are very important measures to reduce infections and severe health outcomes. Exposure to wildfire smoke may introduce additive or even multiplicative risk for SARS-CoV-2 infection and severity of disease in wildland firefighters. Thus, additional mitigative measures may be needed to prevent the co-occurrence of wildfire smoke exposure and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kathleen M Navarro
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, United States of America.
| | - Kathleen A Clark
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, United States of America
| | - Daniel J Hardt
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Spokane, WA, United States of America
| | - Colleen E Reid
- Geography Department, University of Colorado, Boulder, CO, United States of America
| | - Peter W Lahm
- USDA Forest Service, Fire and Aviation Management, Washington, DC, United States of America
| | - Joseph W Domitrovich
- USDA Forest Service, National Technology and Development Program, Missoula, MT, United States of America
| | - Corey R Butler
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, United States of America
| | - John R Balmes
- Department of Medicine, University of California, San Francisco, CA, United States of America; School of Public Health, University of California, Berkeley, CA, United States of America
| |
Collapse
|
2
|
Kaminsky DA, Daphtary N, Estepar RS, Ashikaga T, Mikulic L, Klein J, Kinsey CM. Ventilation Heterogeneity and Its Association with Nodule Formation Among Participants in the National Lung Screening Trial-A Preliminary Investigation. Acad Radiol 2020; 27:630-635. [PMID: 31471206 DOI: 10.1016/j.acra.2019.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES We have developed a technique to measure ventilation heterogeneity (VH) on low dose chest CT scan that we hypothesize may be associated with the development of lung nodules, and perhaps cancer. If true, such an analysis may improve screening by identifying regional areas of higher risk. MATERIALS AND METHODS Using the National Lung Screening Trial database, we identified a small subset of those participants who were labeled as having a positive screening test at 1 year (T1) but not at baseline (T0). We isolated the region in which the nodule would form on the T0 scan ("target region") and measured VH as the standard deviation of the linear dimension of a virtual cubic airspace based on measurement of lung attenuation within the region. RESULTS We analyzed 24 cases, 9 with lung cancer and 15 with a benign nodule. We found that the VH of the target region was nearly statistically greater than that of the corresponding contralateral control region (0.168 [0.110-0.226] vs. 0.112 [0.083-0.203], p = 0.051). The % emphysema within the target region was greater than that of the corresponding contralateral control region (1.339 [0.264-4.367] vs. 1.092 [0.375-4.748], p = 0.037). There was a significant correlation between the % emphysema and the VH of the target region (rho = +0.437, p = 0.026). CONCLUSION Our study provides the first data in support of increased local VH being associated with subsequent lung nodule formation. Further work is necessary to determine whether this technique can enhance screening for lung cancer by low dose chest CT scan.
Collapse
|
3
|
Kramer GH. Expanding our knowledge of internal dosimetry - lung dosimetry. J Thorac Dis 2011; 3:219-20. [PMID: 22263095 PMCID: PMC3256532 DOI: 10.3978/j.issn.2072-1439.2011.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/23/2023]
Affiliation(s)
- Gary H Kramer
- National Internal Radiation Assessment Section, Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|