1
|
Zhao Y, Zhang B, Ma Y, Guo M, Zhao F, Chen J, Wang B, Jin H, Zhou F, Guan J, Zhao Q, Liu Q, Wang H, Zhao F, Wang X. Distinct molecular profiles drive multifaceted characteristics of colorectal cancer metastatic seeds. J Exp Med 2024; 221:e20231359. [PMID: 38502057 PMCID: PMC10949939 DOI: 10.1084/jem.20231359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Metastasis of primary tumors remains a challenge for early diagnosis and prevention. The cellular properties and molecular drivers of metastatically competent clones within primary tumors remain unclear. Here, we generated 10-16 single cell-derived lines from each of three colorectal cancer (CRC) tumors to identify and characterize metastatic seeds. We found that intrinsic factors conferred clones with distinct metastatic potential and cellular communication capabilities, determining organ-specific metastasis. Poorly differentiated or highly metastatic clones, rather than drug-resistant clones, exhibited poor clinical prognostic impact. Personalized genetic alterations, instead of mutation burden, determined the occurrence of metastatic potential during clonal evolution. Additionally, we developed a gene signature for capturing metastatic potential of primary CRC tumors and demonstrated a strategy for identifying metastatic drivers using isogenic clones with distinct metastatic potential in primary tumors. This study provides insight into the origin and mechanisms of metastasis and will help develop potential anti-metastatic therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Jin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Fulai Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiawei Guan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Brandt VP, Holland H, Wallenborn M, Koschny R, Frydrychowicz C, Richter M, Holland L, Nestler U, Sander C. SNP array genomic analysis of matched pairs of brain and liver metastases in primary colorectal cancer. J Cancer Res Clin Oncol 2023; 149:18173-18183. [PMID: 38010391 PMCID: PMC10725338 DOI: 10.1007/s00432-023-05505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Brain metastasis formation is a rare and late event in colorectal cancer (CRC) patients and associated with poor survival. In contrast to other metastatic sites, the knowledge on chromosomal aberrations in brain metastases is very limited. METHODS Therefore, we carried out single nucleotide polymorphism (SNP) array analyses on matched primary CRC and brain metastases of four patients as well as on liver metastases of three patients. RESULTS Brain metastases showed more chromosomal aberrations than primary tumors or liver metastases. Commonly occurring aberrations were gain of 8q11.1-q24.3 (primary CRC), gain of 13q12.13-q12.3 (liver metastases), and gain of 20q11.1-q13.33 (brain metastases). Furthermore, we found one copy-neutral loss of heterozygosity (cn-LOH) region on chromosome 3 in primary CRC, three cn-LOH regions in liver metastases and 23 cn-LOH regions in brain metastases, comprising 26 previously undescribed sites. CONCLUSION The more frequent occurrence of cn-LOHs and subsequently affected genes in brain metastases shed light on the pathophysiology of brain metastasis formation. Further pairwise genetic analyses between primary tumors and their metastases will help to define the role of affected genes in cn-LOH regions.
Collapse
Affiliation(s)
- Vivian-Pascal Brandt
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany.
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany.
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Marco Wallenborn
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Ronald Koschny
- Interdisciplinary Endoscopy Center (IEZ), Department of Gastroenterology and Hepatology, University Hospital Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany
| | - Clara Frydrychowicz
- Paul Flechsig Institute of Neuropathology, University Medicine Leipzig, Leipzig, Saxony, Germany
| | - Mandy Richter
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Lydia Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Saxony, Germany
| | - Ulf Nestler
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| | - Caroline Sander
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
3
|
Usefulness of pyruvate dehydrogenase-E1α expression to determine SUVmax cut-off value of [ 18F]FDG-PET for predicting lymph node metastasis in lung cancer. Sci Rep 2023; 13:1565. [PMID: 36709375 PMCID: PMC9884208 DOI: 10.1038/s41598-023-28805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
A more accurate cut-off value of maximum standardized uptake value (SUVmax) in [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) is necessary to improve preoperative nodal staging in patients with lung cancer. Overall, 223 patients with lung cancer who had undergone [18F]FDG-PET/CT within 2 months before surgery were enrolled. The expression of glucose transporter-1, pyruvate kinase-M2, pyruvate dehydrogenase-E1α (PDH-E1α), and carbonic anhydrase-9 was evaluated by immunohistochemistry. Clinicopathological background was retrospectively investigated. According to PDH-E1α expression in primary lesion, a significant difference (p = 0.021) in SUVmax of metastatic lymph nodes (3.0 with PDH-positive vs 4.5 with PDH-negative) was found, but not of other enzymes. When the cut-off value of SUVmax was set to 2.5, the sensitivity and specificity were 0.529 and 0.562, respectively, and the positive and negative predictive values were 0.505 and 0.586, respectively. However, when the cut-off value of SUVmax was set according to PDH-E1α expression (2.7 with PDH-positive and 3.2 with PDH-negative), the sensitivity and specificity were 0.441 and 0.868, respectively, and the positive and negative predictive values were 0.738 and 0.648, respectively. The SUVmax cut-off value for metastatic lymph nodes depends on PDH-E1α expression in primary lung cancer. The new SUVmax cut-off value according to PDH-E1α expression showed higher specificity for [18F]FDG-PET in the diagnosis of lymph node metastasis.
Collapse
|
4
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Fan B, Xu X, Wang X. Mutational landscape of paired primary and synchronous metastatic lymph node in chemotherapy naive gallbladder cancer. Mol Biol Rep 2022; 49:1295-1301. [PMID: 34988893 DOI: 10.1007/s11033-021-06957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Comprehensive genomic analysis of paired primary tumors and their metastatic lesions may provide new insights into the biology of metastatic processes and therefore guide the development of novel strategies for intervention. To date, our knowledge of the genetic divergence and phylogenetic relationships in gallbladder cancer (GBC) is limited. METHODS We performed whole exome sequencing for 5 patients with primary tumor, metastatic lymph node (LNM) and corresponding normal tissue. Mutations, mutation signatures and copy number variations were analyzed with state-of-art bioinformatics methods. Phylogenetic tree was also generated to infer metastatic pattern. RESULTS Five driver mutations were detected in these patients. Among which, TP53 was the only shared mutation between primary tumor and LNM. Although tumor mutational burden was comparable between primary tumor and LNM, higher mutation burden was observed in LNM of one patient. Copy number variations (CNVs) burden was higher in LNM than their primary tumor. Phylogenetic analysis indicated both linear and parallel progression of metastasis exist in these patients. TP53 mutation and CNVs were homogenously between primary tumor and LNM. CONCLUSIONS High consistence of genetic landscape were shown between primary tumor and LNM in GBC. However, heterogenicity still exist between primary tumor and LNM in particular patients in term of driver mutation, TMB and CNV burden. Phylogenetic analysis indicated both Linear and parallel progression of metastasis were exist among these patients.
Collapse
Affiliation(s)
- Boqiang Fan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, Jiangsu Province, China
| | - Xianfeng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Abidi A, Gorris MAJ, Brennan E, Jongmans MCJ, Weijers DD, Kuiper RP, de Voer RM, Hoogerbrugge N, Schreibelt G, de Vries IJM. Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch Repair Deficiency Syndrome. Cancers (Basel) 2021; 13:2345. [PMID: 34067951 PMCID: PMC8152233 DOI: 10.3390/cancers13102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary disorders characterised by a highly increased risk of cancer development. This is due to germline aberrations in the mismatch repair (MMR) genes, which results in a high mutational load in tumours of these patients, including insertions and deletions in genes bearing microsatellites. This generates microsatellite instability and cause reading frameshifts in coding regions that could lead to the generation of neoantigens and opens up avenues for neoantigen targeting immune therapies prophylactically and therapeutically. However, major obstacles need to be overcome, such as the heterogeneity in tumour formation within and between LS and CMMRD patients, which results in considerable variability in the genes targeted by mutations, hence challenging the choice of suitable neoantigens. The machine-learning methods such as NetMHC and MHCflurry that predict neoantigen- human leukocyte antigen (HLA) binding affinity provide little information on other aspects of neoantigen presentation. Immune escape mechanisms that allow MMR-deficient cells to evade surveillance combined with the resistance to immune checkpoint therapy make the neoantigen targeting regimen challenging. Studies to delineate shared neoantigen profiles across patient cohorts, precise HLA binding algorithms, additional therapies to counter immune evasion and evaluation of biomarkers that predict the response of these patients to immune checkpoint therapy are warranted.
Collapse
Affiliation(s)
- Asima Abidi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Evan Brennan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dilys D. Weijers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
7
|
Montero-Mateos E, Del Carmen S, Sanz J, Rodriguez-García R, Alcázar JA, Sayagués JM, Abad M. Endoluminal tumor implant of a colorectal cancer in an anal fistula detected by FISH techniques: a case report. J Gastrointest Oncol 2021; 12:900-905. [PMID: 34012678 DOI: 10.21037/jgo-20-281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intraluminal shedding of tumor cells is a rare infrequent sporadic colorectal cancer (sCRC) mechanism of spreading. Less than 30 cases of sCRC metastasis into anal fistula have been reported. Here, we study a 72-year-old male with an adenocarcinoma arising in an anal fistula. Subsequent studies revealed another tumor in the rectum without distant metastatic disease; therefore, a curative-intent abdominoperineal resection was performed. The histologic study showed a moderately differentiated adenocarcinoma in both locations. No perineural or lymphovascular invasion was observed, and all the lymphatic nodes resected were negative for malignancy. Both tumors showed positive CK20 and negative CK7 immunostaining, but KRAS G12D mutation was only detected in the rectal tumor. After those conventional studies, a cytogenetic profile of both tumors was performed by interphase fluorescence in situ hybridization (iFISH) techniques. The FISH study displayed an identical genetic profile in both tumors, loss of the chromosomes 8 and 18q, and no alteration in chromosome 7 and 13q. Based on pathological and genetic findings, we established the same clonal origin of both tumors. Currently, the diagnosis of an intraluminal CRC metastasis relies on histologic and immunohistochemistry findings. We suggest that genetic studies at the individual cell level by FISH techniques may be useful in order to differentiate synchronous from intraluminal metastasis.
Collapse
Affiliation(s)
- Enrique Montero-Mateos
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Sofía Del Carmen
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Julia Sanz
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Raquel Rodriguez-García
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - José Antonio Alcázar
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - José María Sayagués
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| | - Mar Abad
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Salamanca e Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
8
|
Gawin M, Kurczyk A, Stobiecka E, Frątczak K, Polańska J, Pietrowska M, Widłak P. Molecular Heterogeneity of Papillary Thyroid Cancer: Comparison of Primary Tumors and Synchronous Metastases in Regional Lymph Nodes by Mass Spectrometry Imaging. Endocr Pathol 2019; 30:250-261. [PMID: 31664609 DOI: 10.1007/s12022-019-09593-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intra-tumor heterogeneity results from both genetic heterogeneity of cancer (sub)clones and phenotypic plasticity of cancer cells that could be induced by different local microenvironments. Here, we used mass spectrometry imaging (MSI) to compare molecular profiles of primary tumors located in the thyroid gland and their synchronous metastases in regional lymph nodes to analyze phenotypic heterogeneity in papillary thyroid cancer. Two types of cancerous (primary tumor and metastasis) and two types of not cancerous (thyroid gland and lymph node) regions of interest (ROIs) were delineated in postoperative material from 11 patients, then the distribution of tryptic peptides (spectral components) was analyzed by MSI in all tissue regions. Moreover, tryptic peptides identified by shotgun proteomics in corresponding tissue lysates were matched to components detected by MSI to enable their hypothetical protein annotation. Unsupervised segmentation of all cancer ROIs revealed that different clusters dominated in tumor ROIs and metastasis ROIs. The intra-patient similarity between thyroid and tumor ROIs was higher than the intra-patient similarity between tumor and metastasis ROIs. Moreover, the similarity between tumor and its metastasis from the same patients was lower than similarities among tumors and among metastases from different patients (inter-patient similarity was higher for metastasis ROIs than for tumor ROIs). Components differentiating between tumor and its metastases were annotated as proteins involved in the organization of the cytoskeleton and chromatin, as well as proteins involved in immunity-related functions. We concluded that phenotypical heterogeneity between primary tumor and lymph node metastases from the same patient was higher than inter-tumor heterogeneity between primary tumors from different patients.
Collapse
Affiliation(s)
- Marta Gawin
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Agata Kurczyk
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Ewa Stobiecka
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Katarzyna Frątczak
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Joanna Polańska
- Data Mining Division, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100, Gliwice, Poland
| | - Monika Pietrowska
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland
| | - Piotr Widłak
- Maria Skłodowska-Curie Institute-Oncology Center, 44-101, Gliwice, Poland.
| |
Collapse
|
9
|
Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells. Neoplasia 2019; 21:721-729. [PMID: 31174021 PMCID: PMC6551473 DOI: 10.1016/j.neo.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Chromosomal aneuploidy is a defining feature of epithelial cancers. The pattern of aneuploidies is cancer-type specific. For instance, the gain of chromosome 13 occurs almost exclusively in colorectal cancer. We used microcell-mediated chromosome transfer to generate gains of chromosome 13 in the diploid human colorectal cancer cell line DLD-1. Extra copies of chromosome 13 resulted in a significant and reproducible up-regulation of transcript levels of genes on chromosome 13 (P = .0004, FDR = 0.01) and a genome-wide transcriptional deregulation in all 8 independent clones generated. Genes contained in two clusters were particularly affected: the first cluster on cytoband 13q13 contained 7 highly up-regulated genes (NBEA, MAB21L1, DCLK1, SOHLH2, CCDC169, SPG20 and CCNA1, P = .0003) in all clones. A second cluster was located on 13q32.1 and contained five upregulated genes (ABCC4, CLDN10, DZIP1, DNAJC3 and UGGT2, P = .003). One gene, RASL11A, localized on chromosome band 13q12.2, escaped the copy number-induced overexpression and was reproducibly and significantly down-regulated on the mRNA and protein level (P = .0001, FDR = 0.002). RASL11A expression levels were also lower in primary colorectal tumors as compared to matched normal mucosa (P = .0001, FDR = 0.0001. Overexpression of RASL11A increases cell proliferation and anchorage independent growth while decreasing cell migration in +13 clones. In summary, we observed a strict correlation of genomic copy number and resident gene expression levels, and aneuploidy dependent consistent genome-wide transcriptional deregulation.
Collapse
|
10
|
Wagner S, Mullins CS, Linnebacher M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J Gastroenterol 2018; 24:5418-5432. [PMID: 30622371 PMCID: PMC6319136 DOI: 10.3748/wjg.v24.i48.5418] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Therapeutic options for the treatment of colorectal cancer (CRC) are diverse but still not always satisfying. Recent success of immune checkpoint inhibition treatment for the subgroup of CRC patients suffering from hyper-mutated tumors suggests a permanent role of immune therapy in the clinical management of CRC. Substantial improvement in treatment outcome could be achieved by development of efficient patient-individual CRC vaccination strategies. This mini-review summarizes the current knowledge on the two general classes of targets: tumor-associated antigens (TAAs) and tumor-specific antigens. TAAs like carcinoembryonic antigen and melanoma associated antigen are present in and shared by a subgroup of patients and a variety of clinical studies examined the efficacy of different TAA-derived peptide vaccines. Combinations of several TAAs as the next step and the development of personalized TAA-based peptide vaccines are discussed. Improvements of peptide-based vaccines achievable by adjuvants and immune-stimulatory chemotherapeutics are highlighted. Finally, we sum up clinical studies using tumor-specific antigens - in CRC almost exclusively neoantigens - which revealed promising results; particularly no severe adverse events were reported so far. Critical progress for clinical outcomes can be expected by individualizing neoantigen-based peptide vaccines and combining them with immune-stimulatory chemotherapeutics and immune checkpoint inhibitors. In light of these data and latest developments, truly personalized neoantigen-based peptide vaccines can be expected to fulfill modern precision medicine’s requirements and will manifest as treatment pillar for routine clinical management of CRC.
Collapse
Affiliation(s)
- Sandra Wagner
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Christina S Mullins
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| | - Michael Linnebacher
- Section of Molecular Oncology and Immunotherapy, General Surgery, University Medical Center, Rostock D-18057, Germany
| |
Collapse
|
11
|
Ziv E, Bergen M, Yarmohammadi H, Boas FE, Petre EN, Sofocleous CT, Yaeger R, Solit DB, Solomon SB, Erinjeri JP. PI3K pathway mutations are associated with longer time to local progression after radioembolization of colorectal liver metastases. Oncotarget 2017; 8:23529-23538. [PMID: 28206962 PMCID: PMC5410324 DOI: 10.18632/oncotarget.15278] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
Purpose To establish the relationship between common mutations in the MAPK and PI3K signaling pathways and local progression after radioembolization. Materials and Methods Retrospective review of a HIPAA-compliant institutional review-board approved database identified 40 patients with chemo-refractory colorectal liver metastases treated with radioembolization who underwent tumor genotyping for hotspot mutations in 6 key genes in the MAPK/PI3K pathways (KRAS, NRAS, BRAF, MEK1, PIK3CA, and AKT1). Mutation status as well as clinical, tumor, and treatment variables were recorded. These factors were evaluated in relation to time to local progression (TTLP), which was calculated from time of radioembolization to first radiographic evidence of local progression. Predictors of outcome were identified using a proportional hazards model for both univariate and multivariate analysis with death as a competing risk. Results Sixteen patients (40%) had no mutations in either pathway, eighteen patients (45%) had mutations in the MAPK pathway, ten patients (25%) had mutations in the PI3K pathway and four patients (10%) had mutations in both pathways. The cumulative incidence of progression at 6 and 12 months was 33% and 55% for the PI3K mutated group compared with 76% and 92% in the PI3K wild type group. Mutation in the PI3K pathway was a significant predictor of longer TTLP in both univariate (p=0.031, sHR 0.31, 95% CI: 0.11-0.90) and multivariate (p=0.015, sHR=0.27, 95% CI: 0.096-0.77) analysis. MAPK pathway alterations were not associated with TTLP. Conclusions PI3K pathway mutation predicts longer time to local progression after radioembolization of colorectal liver metastases.
Collapse
Affiliation(s)
- Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Michael Bergen
- Department of Radiology, Mount Sinai Hospital, New York, USA
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - F Ed Boas
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - E Nadia Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, USA.,Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Stephen B Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
12
|
Skuja E, Kalniete D, Nakazawa-Miklasevica M, Daneberga Z, Abolins A, Purkalne G, Miklasevics E. Chromothripsis and progression-free survival in metastatic colorectal cancer. Mol Clin Oncol 2017; 6:182-186. [PMID: 28357089 PMCID: PMC5351707 DOI: 10.3892/mco.2017.1123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022] Open
Abstract
Metastatic dissemination of the primary tumor is the major cause of death in colorectal cancer (CRC) patients. Multiple chromosomal breaks and chromothripsis, a phenomenon involving multiple chromosomal fragmentations occurring in a single catastrophic event, are associated with cancer genesis, progression and developing of metastases. The aim of this study was to evaluate the effect of chromothripsis and total breakpoint count (breakpoint instability index) on progression-free survival (PFS). A total of 19 patients with metastatic CRC (mCRC) receiving FOLFOX first-line palliative chemotherapy between August, 2011 and October, 2012 were selected for this study. The results indicated that the highest breakpoint count was observed in chromosomes 1, 2 and 6. Chromothripsis was detected in 52.6% of the study patients. Furthermore, chromothripsis was associated with an increased median PFS (mPFS; 14 vs. 8 months, respectively; P=0.03), but an association with overall survival was not identified. The present study demonstrated that chromothripsis affected CRC patient survival, suggesting a role for this event as a prognostic and predictive marker in mCRC treatment.
Collapse
Affiliation(s)
- Elina Skuja
- Clinic of Oncology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; Institute of Oncology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Dagnija Kalniete
- Institute of Oncology, Riga Stradins University, LV-1007 Riga, Latvia
| | | | - Zanda Daneberga
- Institute of Oncology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Arnis Abolins
- Institute of Pathology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Gunta Purkalne
- Clinic of Oncology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia; Institute of Oncology, Riga Stradins University, LV-1007 Riga, Latvia
| | | |
Collapse
|
13
|
Sveen A, Løes IM, Alagaratnam S, Nilsen G, Høland M, Lingjærde OC, Sorbye H, Berg KCG, Horn A, Angelsen JH, Knappskog S, Lønning PE, Lothe RA. Intra-patient Inter-metastatic Genetic Heterogeneity in Colorectal Cancer as a Key Determinant of Survival after Curative Liver Resection. PLoS Genet 2016; 12:e1006225. [PMID: 27472274 PMCID: PMC4966938 DOI: 10.1371/journal.pgen.1006225] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Chromosomal instability is a well-defined hallmark of tumor aggressiveness and metastatic progression in colorectal cancer. The magnitude of genetic heterogeneity among distinct liver metastases from the same patient at the copy number level, as well as its relationship with chemotherapy exposure and patient outcome, remains unknown. We performed high-resolution DNA copy number analyses of 134 liver metastatic deposits from 45 colorectal cancer patients to assess: (i) intra-patient inter-metastatic genetic heterogeneity using a heterogeneity score based on pair-wise genetic distances among tumor deposits; and (ii) genomic complexity, defined as the proportion of the genome harboring aberrant DNA copy numbers. Results were analyzed in relation to the patients' clinical course; previous chemotherapy exposure and outcome after surgical resection of liver metastases. We observed substantial variation in the level of intra-patient inter-metastatic heterogeneity. Heterogeneity was not associated with the number of metastatic lesions or their genomic complexity. In metachronous disease, heterogeneity was higher in patients previously exposed to chemotherapy. Importantly, intra-patient inter-metastatic heterogeneity was a strong prognostic determinant, stronger than known clinicopathological prognostic parameters. Patients with a low level of heterogeneity (below the median level) had a three-year progression-free and overall survival rate of 23% and 66% respectively, versus 5% and 18% for patients with a high level (hazard ratio0.4, 95% confidence interval 0.2-0.8, P = 0.01; and hazard ratio0.3,95% confidence interval 0.1-0.7, P = 0.007). A low patient-wise level of genomic complexity (below 25%) was also a favorable prognostic factor; however, the prognostic association of intra-patient heterogeneity was independent of genomic complexity in multivariable analyses. In conclusion, intra-patient inter-metastatic genetic heterogeneity is a pronounced feature of metastatic colorectal cancer, and the strong prognostic association reinforces its clinical relevance and places it as a key feature to be explored in future patient cohorts.
Collapse
Affiliation(s)
- Anita Sveen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Inger Marie Løes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Sharmini Alagaratnam
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gro Nilsen
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
| | - Maren Høland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Kaja Christine Graue Berg
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild Horn
- Department of Digestive Surgery, Haukeland University Hospital, Bergen, Norway
| | - Jon-Helge Angelsen
- Department of Digestive Surgery, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per Eystein Lønning
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|