1
|
Sun S, Yang Q, Jiang D, Zhang Y. Nanobiotechnology augmented cancer stem cell guided management of cancer: liquid-biopsy, imaging, and treatment. J Nanobiotechnology 2024; 22:176. [PMID: 38609981 PMCID: PMC11015566 DOI: 10.1186/s12951-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent both a key driving force and therapeutic target of tumoral carcinogenesis, tumor evolution, progression, and recurrence. CSC-guided tumor diagnosis, treatment, and surveillance are strategically significant in improving cancer patients' overall survival. Due to the heterogeneity and plasticity of CSCs, high sensitivity, specificity, and outstanding targeting are demanded for CSC detection and targeting. Nanobiotechnologies, including biosensors, nano-probes, contrast enhancers, and drug delivery systems, share identical features required. Implementing these techniques may facilitate the overall performance of CSC detection and targeting. In this review, we focus on some of the most recent advances in how nanobiotechnologies leverage the characteristics of CSC to optimize cancer diagnosis and treatment in liquid biopsy, clinical imaging, and CSC-guided nano-treatment. Specifically, how nanobiotechnologies leverage the attributes of CSC to maximize the detection of circulating tumor DNA, circulating tumor cells, and exosomes, to improve positron emission computed tomography and magnetic resonance imaging, and to enhance the therapeutic effects of cytotoxic therapy, photodynamic therapy, immunotherapy therapy, and radioimmunotherapy are reviewed.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Patel RK, Parappilly M, Rahman S, Schwantes IR, Sewell M, Giske NR, Whalen RM, Durmus NG, Wong MH. The Hallmarks of Circulating Hybrid Cells. Results Probl Cell Differ 2024; 71:467-485. [PMID: 37996690 DOI: 10.1007/978-3-031-37936-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
While tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites. In-depth analyses of hybrid cell biology indicate that they can exploit phenotypic properties of both parental tumor and immune cells, in order to intravasate into circulation, evade the immune response, and seed tumors at distant sites. Thus, it has become increasingly evident that the development and dissemination of tumor-immune hybrid cells play an intricate and fundamental role in the metastatic cascade and can provide invaluable information regarding tumor characteristics and patient prognostication. In this chapter, we review the current understanding of this novel hybrid cell population, the specific hallmarks of cancer that these cells exploit to promote cancer progression and metastasis, and discuss exciting new frontiers that remain to be explored.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marisa Sewell
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nicole R Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Riley M Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Jin F, Zhu L, Shao J, Yakoub M, Schmitt L, Reißfelder C, Loges S, Benner A, Schölch S. Circulating tumour cells in patients with lung cancer universally indicate poor prognosis. Eur Respir Rev 2022; 31:31/166/220151. [PMID: 36517047 PMCID: PMC9879327 DOI: 10.1183/16000617.0151-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In lung cancer, the relevance of various circulating tumour cell (CTC) subgroups in different lung cancer subtypes is unclear. We performed a comprehensive meta-analysis to assess the prognostic value of CTCs in the different histological types of lung cancer, with particular respect to CTC subtypes, cut-offs and time points of CTC enumeration. METHODS We searched MEDLINE, Web of Science and Embase alongside relevant studies evaluating the prognostic value of CTCs in lung cancer patients. A random-effects model was used for meta-analysis, calculating hazard ratios (HRs), 95% confidence intervals and p-values. RESULTS 27 studies enrolling 2957 patients were included. CTC detection indicates poor prognosis, especially in small cell lung cancer (SCLC) patients (overall survival HR 3.11, 95% CI 2.59-3.73) and predicts a worse outcome compared to nonsmall cell lung cancer patients. Epithelial CTCs predict a worse outcome for lung cancer than mesenchymal CTCs or epithelial-mesenchymal hybrids. CONCLUSION CTCs indicate poor prognosis in patients with primary lung cancer, with CTCs in SCLC having a more pronounced prognostic effect. The prognostic value of CTCs detected by different markers varies; most evidence is available for the strong negative prognostic effect of epithelial CTCs.
Collapse
Affiliation(s)
- Fukang Jin
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,These co-first authors contributed equally to this work
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,These co-first authors contributed equally to this work
| | - Jingbo Shao
- Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lukas Schmitt
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Personalized Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Axel Benner
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany,DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany,Department of Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Corresponding author: Sebastian Schölch ()
| |
Collapse
|
4
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
5
|
Obermayr E, Koppensteiner N, Heinzl N, Schuster E, Holzer B, Fabikan H, Weinlinger C, Illini O, Hochmair M, Zeillinger R. Cancer Stem Cell-Like Circulating Tumor Cells Are Prognostic in Non-Small Cell Lung Cancer. J Pers Med 2021; 11:jpm11111225. [PMID: 34834576 PMCID: PMC8620949 DOI: 10.3390/jpm11111225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 01/19/2023] Open
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), less than 10% of patients survive the first five years when the disease has already spread at primary diagnosis. Methods: Blood samples were taken from 118 NSCLC patients at primary diagnosis or at progression of the disease before the start of a new treatment line and enriched for circulating tumor cells (CTCs) by microfluidic Parsortix™ (Angle plc, Guildford GU2 7AF, UK) technology. The gene expression of epithelial cancer stem cell (CSC), epithelial to mesenchymal (EMT), and lung-related markers was assessed by qPCR, and the association of each marker with overall survival (OS) was evaluated using log-rank tests. Results: EpCAM was the most prevalent transcript, with 53.7% positive samples at primary diagnosis and 25.6% at recurrence. EpCAM and CK19, as well as NANOG, PROM1, TERT, CDH5, FAM83A, and PTHLH transcripts, were associated with worse OS. However, only the CSC-specific NANOG and PROM1 were related to the outcome both at primary diagnosis (NANOG: HR 3.21, 95%CI 1.02–10.14, p = 0.016; PROM1: HR 4.23, 95% CI 0.65–27.56, p = 0.007) and disease progression (NANOG: HR 4.17, 95%CI 0.72–24.14, p = 0.025; PROM1: HR 4.77, 95% CI 0.29–78.94, p = 0.032). Conclusions: The present study further underlines the relevance of the molecular characterization of CTCs. Our multi-marker analysis highlighted the prognostic value of cancer stem cell-related transcripts at primary diagnosis and disease progression.
Collapse
Affiliation(s)
- Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
- Correspondence: ; Tel.: +43-14-0400-78270
| | - Nina Koppensteiner
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
| | - Nicole Heinzl
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
| | - Eva Schuster
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
| | - Barbara Holzer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
| | - Hannah Fabikan
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Bruenner Strasse 68, 1210 Vienna, Austria; (H.F.); (C.W.); (O.I.); (M.H.)
| | - Christoph Weinlinger
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Bruenner Strasse 68, 1210 Vienna, Austria; (H.F.); (C.W.); (O.I.); (M.H.)
| | - Oliver Illini
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Bruenner Strasse 68, 1210 Vienna, Austria; (H.F.); (C.W.); (O.I.); (M.H.)
| | - Maximilian Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Bruenner Strasse 68, 1210 Vienna, Austria; (H.F.); (C.W.); (O.I.); (M.H.)
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria; (N.K.); (N.H.); (E.S.); (B.H.); (R.Z.)
| |
Collapse
|
6
|
Li BW, Wei K, Liu QQ, Sun XG, Su N, Li WM, Shang MY, Li JM, Liao D, Li J, Lu WP, Deng SL, Huang Q. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing. Front Bioeng Biotechnol 2021; 9:750444. [PMID: 34778227 PMCID: PMC8578950 DOI: 10.3389/fbioe.2021.750444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Circulating tumor cells (CTCs) play a crucial role in solid tumor metastasis, but obtaining high purity and viability CTCs is a challenging task due to their rarity. Although various works using spiral microchannels to isolate CTCs have been reported, the sorting purity of CTCs has not been significantly improved. Herein, we developed a novel double spiral microchannel for efficient separation and enrichment of intact and high-purity CTCs based on the combined effects of two-stage inertial focusing and particle deflection. Particle deflection relies on the second sheath to produce a deflection of the focused sample flow segment at the end of the first-stage microchannel, allowing larger particles to remain focused and entered the second-stage microchannel while smaller particles moved into the first waste channel. The deflection of the focused sample flow segment was visualized. Testing by a binary mixture of 10.4 and 16.5 μm fluorescent microspheres, it showed 16.5 μm with separation efficiency of 98% and purity of 90% under the second sheath flow rate of 700 μl min−1. In biological experiments, the average purity of spiked CTCs was 74% at a high throughput of 1.5 × 108 cells min−1, and the recovery was more than 91%. Compared to the control group, the viability of separated cells was 99%. Finally, we validated the performance of the double spiral microchannel using clinical cancer blood samples. CTCs with a concentration of 2–28 counts ml−1 were separated from all 12 patients’ peripheral blood. Thus, our device could be a robust and label-free liquid biopsy platform in inertial microfluidics for successful application in clinical trials.
Collapse
Affiliation(s)
- Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Kun Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qi-Qi Liu
- Department of Nursing, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei-Yun Shang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Mi Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Liao
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Clinical Relevance of Mesenchymal- and Stem-Associated Phenotypes in Circulating Tumor Cells Isolated from Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092158. [PMID: 33947159 PMCID: PMC8124761 DOI: 10.3390/cancers13092158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Lung cancer is the most frequent malignancy in the world. Most lung cancer patients are diagnosed at an advanced stage. To make matters worse, the survival of patients is very poor. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. It is definitely not easy being a CTC. First, they escape from the primary tumor, then they travel in the bloodstream, have to survive really harsh conditions, and finally, they form metastases. The adoption of epithelial-to-mesenchymal transition as well as cancer stem cell features has been suggested to allow CTCs to survive and metastasize. This review will focus on how these features can be used to estimate the prognosis of lung cancer patients. Abstract Lung cancer is the leading cause of cancer-related mortality globally. Among the types of lung cancer, non-small-cell lung cancer (NSCLC) is more common, while small-cell lung cancer (SCLC) is less frequent yet more aggressive. Circulating tumor cells (CTCs), albeit rare, have been portrayed as essential players in the progression of lung cancer. CTCs are considered to adopt an epithelial-to-mesenchymal transition (EMT) phenotype and characteristics of cancer stem cells (CSCs). This EMT (or partial) phenotype affords these cells the ability to escape from the primary tumor, travel into the bloodstream, and survive extremely adverse conditions, before colonizing distant foci. Acquisition of CSC features, such as self-renewal, differentiation, and migratory potential, further reflect CTCs’ invasive potential. CSCs have been identified in lung cancer, and expression of EMT markers has previously been correlated with poor clinical outcomes. Thus far, a vast majority of studies have concentrated on CTC detection and enumeration as a prognostic tools of patients’ survival or for monitoring treatment efficacy. In this review, we highlight EMT and CSC markers in CTCs and focus on the clinical significance of these phenotypes in the progression of both non-small- and small-cell lung cancer.
Collapse
|
8
|
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients. Cancers (Basel) 2021; 13:cancers13051119. [PMID: 33807790 PMCID: PMC7961579 DOI: 10.3390/cancers13051119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Detection of circulating tumor cells (CTCs) in the blood of cancer patients is a challenging issue, since they adapt to the biochemical and physical landscape of the bloodstream. We approached the issue of CTC identification on a biophysical level. For the first time, we recorded the mechanical deformation profiles of potential CTCs, which were isolated from the blood of breast cancer patients, at the force regime of the deforming blood flow. Mechanical fingerprints of CTCs were significantly different from healthy white blood cells. We used machine learning to further evaluate the differences and identify discrimination criteria. Our results suggest that mechanical characterization of CTCs at low forces is a promising path towards CTC detection. Abstract Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.
Collapse
|
9
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
Ishiguro Y, Sakihama H, Yoshida T, Ichikawa N, Homma S, Fukai M, Kawamura H, Takahashi N, Taketomi A. Prognostic Significance of Circulating Tumor Cells with Mesenchymal Phenotypes in Patients with Gastric Cancer: A Prospective Study. Ann Surg Oncol 2020; 28:1178-1186. [PMID: 32770296 DOI: 10.1245/s10434-020-08827-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Circulating tumor cells (CTCs) have been shown to be heterogeneous. Focusing on the epithelial-mesenchymal transition and perioperative kinetics, we evaluated CTCs with mesenchymal phenotypes as a potential prognostic biomarker for patients with gastric cancer. METHODS Peripheral blood was collected from 54 patients with gastric cancer before surgery and at 1 week and 1 month after surgery. CTCs were enriched using density-gradient centrifugation and magnetic-activated cell sorting (negative selection). Cell suspensions were characterized by multi-immunofluorescence staining against cytokeratin and N-cadherin, and by 4',6'-diamidino-2-phenyldole staining. RESULTS CTCs were detected in five patients (17%) with early cancer and 14 patients (56%) with advanced cancer (p < 0.05). In our system, N-cadherin, but not cytokeratin, was expressed in the CTCs of 90% (19/21) of patients. Postoperative recurrence was detected in 10 patients, all of whom had N-cadherin+/cytokeratin-/CD45- CTCs preoperatively. Regarding perioperative kinetics, we divided patients into three risk groups: a high-risk group, with one or more preoperative CTCs and increased CTCs postoperatively; an intermediate-risk group, with one or more preoperative CTCs and decreased CTCs postoperatively; and a low-risk group, with no preoperative CTCs. Recurrence rates were 57% (4/7), 33% (4/12), and 6% (2/35), respectively. The relapse-free survival rate was lower in patients at high risk versus those at intermediate or low risk, for all patients (p = 0.00024) and in patients with advanced cancer (p = 0.00103). CONCLUSIONS N-cadherin is a highly useful marker to detect CTCs lacking cytokeratin, and the perioperative kinetics of CTC numbers is beneficial in risk stratification for survival in patients with gastric cancer.
Collapse
Affiliation(s)
- Yui Ishiguro
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Hideyasu Sakihama
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Tadashi Yoshida
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuki Ichikawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Hideki Kawamura
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Norihiko Takahashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
11
|
The Validity and Predictive Value of Blood-Based Biomarkers in Prediction of Response in the Treatment of Metastatic Non-Small Cell Lung Cancer: A Systematic Review. Cancers (Basel) 2020; 12:cancers12051120. [PMID: 32365836 PMCID: PMC7280996 DOI: 10.3390/cancers12051120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
With the introduction of targeted therapies and immunotherapy, molecular diagnostics gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC. A systematic literature search was performed, including results published after 1 January 2014. Articles studying the predictive value or validity of a LB were included. The search (up to 1 September 2019) retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles were assessed for eligibility by full-text review. After full-text review, 64 articles investigating the predictive value and 78 articles describing the validity were included. The majority of studies investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors based on the mutation status found in LBs of NSCLC patients.
Collapse
|
12
|
Tamminga M, Andree KC, Hiltermann TJN, Jayat M, Schuuring E, van den Bos H, Spierings DCJ, Lansdorp PM, Timens W, Terstappen LWMM, Groen HJM. Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch ® and ISET. Cancers (Basel) 2020; 12:E896. [PMID: 32272669 PMCID: PMC7226321 DOI: 10.3390/cancers12040896] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 01/04/2023] Open
Abstract
Circulating tumor cells (CTCs) detected by CellSearch are prognostic in non-small-cell lung cancer (NSCLC), but rarely found. CTCs can be extracted from the blood together with mononuclear cell populations by diagnostic leukapheresis (DLA), therefore concentrating them. However, CellSearch can only process limited DLA volumes (≈2 mL). Therefore, we established a protocol to enumerate CTCs in DLA products with Isolation by SizE of Tumor cells (ISET), and compared CTC counts between CellSearch® and ISET. DLA was performed in NSCLC patients who started a new therapy. With an adapted protocol, ISET could process 10 mL of DLA. CellSearch detected CTCs in a volume equaling 2 × 108 leukocytes (mean 2 mL). CTC counts per mL were compared. Furthermore, the live cell protocol of ISET was tested in eight patients. ISET successfully processed all DLA products-16 with the fixed cell protocol and 8 with the live cell protocol. In total, 10-20 mL of DLA was processed. ISET detected CTCs in 88% (14/16), compared to 69% (11/16, p < 0.05) with CellSearch. ISET also detected higher number of CTCs (ISET median CTC/mL = 4, interquartile range [IQR] = 2-6, CellSearch median CTC/mL = 0.9, IQR = 0-1.8, p < 0.01). Cells positive for the epithelial cell adhesion molecule (EpCAM+) per mL were detected in similar counts by both methods. Eight patients were processed with the live cell protocol. All had EpCAM+, CD45-, CD235- cells isolated by fluorescence-activated cell sorting (FACS). Overall, ISET processed larger volumes and detected higher CTC counts compared to CellSearch. EpCAM+ CTCs were detected in comparable rates.
Collapse
Affiliation(s)
- Menno Tamminga
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| | - Kiki C. Andree
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (K.C.A.); (L.W.M.M.T.)
| | - T. Jeroen N. Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| | | | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (W.T.)
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
| | - Diana C. J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
| | - Peter M. Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (H.v.d.B.); (D.C.J.S.); (P.M.L.)
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (E.S.); (W.T.)
| | - Leon W. M. M. Terstappen
- Department of Medical Cell BioPhysics, Faculty of Sciences and Technology, University of Twente, 7522 NB Enschede, The Netherlands; (K.C.A.); (L.W.M.M.T.)
| | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (M.T.); (T.J.N.H.)
| |
Collapse
|
13
|
Zheng H, Wu X, Yin J, Wang S, Li Z, You C. Clinical applications of liquid biopsies for early lung cancer detection. Am J Cancer Res 2019; 9:2567-2579. [PMID: 31911847 PMCID: PMC6943362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, the clinical utility of liquid biopsies in lung cancer has drawn increasing attention. Having been successfully applied in targeted therapy for late stage lung cancer, liquid biopsies are being further investigated regarding their potential role for early detection of lung cancer. Novel biomarkers with high sensitivity and specificity are crucial for identifying patients at early stages as well as for monitoring high-risk populations. A variety of bodily fluids (such as plasma, serum, and sputum) and biomarkers (such as cfDNA, CTCs, gene methylation, and miRNA) have been investigated for their potential role in the diagnosis of lung cancer. In this review, we summarize recent advances in circulating biomarkers regarding the early detection of lung cancer and discuss their potential applications and challenges in clinical settings.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Bioinformatics, Lianxi Biotech800 HuanHu Xier Road, Shanghai, China
- Department of Bioinformatics, Novo Vivo Inc435 Tasso St, Palo Alto, CA 94301, USA
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Jie Yin
- Purdue University625 Agriculture Mall Dr, West Lafayette, IN 47907, USA
| | - Shuang Wang
- School of Informatics, Computing and Engineering, Indiana University BloomingtonBloomington, IN 47405, USA
- Institutes for Systems Genetics, West China HospitalChengdu, Sichuan, China
- Shanghai Putuo People’s Hospital, Tongji UniversityShanghai, China
- Department of Bioinformatics, Novo Vivo Inc435 Tasso St, Palo Alto, CA 94301, USA
| | - Zhi Li
- Department of Bioinformatics, Lianxi Biotech800 HuanHu Xier Road, Shanghai, China
| | - Changxuan You
- Department of Oncology, Medical Center for Overseas Patient, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
14
|
Shishido SN, Carlsson A, Nieva J, Bethel K, Hicks JB, Bazhenova L, Kuhn P. Circulating tumor cells as a response monitor in stage IV non-small cell lung cancer. J Transl Med 2019; 17:294. [PMID: 31462312 PMCID: PMC6714097 DOI: 10.1186/s12967-019-2035-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/18/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Monitoring circulating tumor cells (CTC) has been shown to be prognostic in most solid malignancies. There is no CTC assay in clinical use for lung cancer therapy monitoring due to inconclusive clinical utility data. Limited data has been published outside of the standard CTC enumerations, regarding clinical significance of phenotypic heterogeneity of CTCs in late stage NSCLC and its ability to correlate with treatment outcomes. METHODS In 81 patients with stage IV NSCLC, multiple timepoints for CTC analysis were collected after initiation of treatment across 139 lines of therapy using single cell high definition diagnostic pathology imaging of all nucleated cells from 362 peripheral blood samples as a liquid biopsy. RESULTS We analyzed the subset of 25 patients with complete time series data, totaling 117 blood samples, to determine the significance of HD-CTC kinetics during the initiation of treatment. These kinetics follow three distinct patterns: an increase in HD-CTCs with therapy (mean + 118.40 HD-CTCs/mL), unchanged HD-CTCs numbers (stable; mean 0.54 HD-CTCs/mL), and a decrease in HD-CTCs numbers (mean - 81.40 HD-CTCs/mL). Patients with an increasing CTC count during the first 3 months post initiation of new treatment had a better PFS and OS compared to the other groups. There was weak correlation between the absolute number of HD-CTCs at a single time point of therapy and patient outcomes (OS p value = 0.0754). In the whole cohort of 81 patients, HD-CTCs were detected in 51 (63%) patients at initiation of therapy with a median of 2.20 (range 0-509.20) and a mean of 26.21 HD-CTCs/mL (± 15.64). CONCLUSIONS CTCs are identifiable in most patients with stage IV NSCLC. While absolute HD-CTC counts do not correlate with prognosis, the changes in CTC counts were predictive of survival in patients with metastatic lung cancer receiving chemotherapy. The level and dynamics of CTCs indicate very different biological and pharmacological phenomena at different stages of disease and timepoints of treatment, highlighting the complex role of CTCs in cancer research and clinical management.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W Childs Way, MCB351, MC:3502, Los Angeles, CA 90089-3502 USA
| | - Anders Carlsson
- Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W Childs Way, MCB351, MC:3502, Los Angeles, CA 90089-3502 USA
| | - Jorge Nieva
- University of Southern California, 1441 Eastlake Avenue, Suite 3440, Los Angeles, CA 90033 USA
| | - Kelly Bethel
- Scripps Clinic, Department of Pathology, 10666 North Torrey Pines Road, MC211C, La Jolla, CA 92037 USA
| | - James B. Hicks
- Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W Childs Way, MCB351, MC:3502, Los Angeles, CA 90089-3502 USA
| | - Lyudmila Bazhenova
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92093 USA
| | - Peter Kuhn
- Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, 1002 W Childs Way, MCB351, MC:3502, Los Angeles, CA 90089-3502 USA
| |
Collapse
|
15
|
Circulating Hybrid Cells Join the Fray of Circulating Cellular Biomarkers. Cell Mol Gastroenterol Hepatol 2019; 8:595-607. [PMID: 31319228 PMCID: PMC6889578 DOI: 10.1016/j.jcmgh.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Gastrointestinal cancers account for more cancer-related deaths than any other organ system, owing in part to difficulties in early detection, treatment response assessment, and post-treatment surveillance. Circulating biomarkers hold the promise for noninvasive liquid biopsy platforms to overcome these obstacles. Although tumors shed detectable levels of degraded genetic material and cellular debris into peripheral blood, identifying reproducible and clinically relevant information from these analytes (eg, cell-free nucleotides, exosomes, proteins) has proven difficult. Cell-based circulating biomarkers also present challenges, but have multiple advantages including allowing for a more comprehensive tumor analysis, and communicating the risk of metastatic spread. Circulating tumor cells have dominated the cancer cell biomarker field with robust evidence in extraintestinal cancers; however, establishing their clinical utility beyond that of prognostication in colorectal and pancreatic cancers has remained elusive. Recently identified novel populations of tumor-derived cells bring renewed potential to this area of investigation. Cancer-associated macrophage-like cells, immune cells with phagocytosed tumor material, also show utility in prognostication and assessing treatment responsiveness. In addition, circulating hybrid cells are the result of tumor-macrophage fusion, with mounting evidence for a role in the metastatic cascade. Because of their relative abundance in circulation, circulating hybrid cells have great potential as a liquid biomarker for early detection, prognostication, and surveillance. In all, the power of the cell reaches beyond enumeration by providing a cellular source of tumor DNA, RNA, and protein, which can be harnessed to impact overall survival.
Collapse
|
16
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
17
|
Turetta M, Bulfoni M, Brisotto G, Fasola G, Zanello A, Biscontin E, Mariuzzi L, Steffan A, Di Loreto C, Cesselli D, Del Ben F. Assessment of the Mutational Status of NSCLC Using Hypermetabolic Circulating Tumor Cells. Cancers (Basel) 2018; 10:cancers10080270. [PMID: 30110953 PMCID: PMC6115779 DOI: 10.3390/cancers10080270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 01/11/2023] Open
Abstract
Molecular characterization is currently a key step in NSCLC therapy selection. Circulating tumor cells (CTC) are excellent candidates for downstream analysis, but technology is still lagging behind. In this work, we show that the mutational status of NSCLC can be assessed on hypermetabolic CTC, detected by their increased glucose uptake. We validated the method in 30 Stage IV NSCLC patients: peripheral blood samples were incubated with a fluorescent glucose analog (2-NBDG) and analyzed by flow cytometry. Cells with the highest glucose uptake were sorted out. EGFR and KRAS mutations were detected by ddPCR. In sorted cells, mutated DNA was found in 85% of patients, finding an exact match with primary tumor in 70% of cases. Interestingly, in two patients multiple KRAS mutations were detected. Two patients displayed different mutations with respect to the primary tumor, and in two out of the four patients with a wild type primary tumor, new mutations were highlighted: EGFR p.746_750del and KRAS p.G12V. Hypermetabolic CTC can be enriched without the need of dedicated equipment and their mutational status can successfully be assessed by ddPCR. Finally, the finding of new mutations supports the possibility of probing tumor heterogeneity.
Collapse
Affiliation(s)
- Matteo Turetta
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Michela Bulfoni
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
- IOV-IRCCS, Immunology and Molecular Oncology Unit, V. Gattamelata 64, 35128 Padova, Italy.
- DISCOG, University of Padova, V. Giustiniani 2, 35128 Padova, Italy.
| | - Gianpiero Fasola
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Andrea Zanello
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Eva Biscontin
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Laura Mariuzzi
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| | - Carla Di Loreto
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Daniela Cesselli
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Udine Academic Hospital, P.le Santa Maria della Misericordia 15, 33100 Udine, Italy.
| | - Fabio Del Ben
- Department of Medicine, University of Udine, P.le Kolbe 4, 33100 Udine, Italy.
- Immunopathology and Cancer Biomarkers, C.R.O. Aviano National Cancer Institute IRCCS, via F. Gallini 2, 33081 Aviano (PN), Italy.
| |
Collapse
|
18
|
Kapeleris J, Kulasinghe A, Warkiani ME, Vela I, Kenny L, O'Byrne K, Punyadeera C. The Prognostic Role of Circulating Tumor Cells (CTCs) in Lung Cancer. Front Oncol 2018; 8:311. [PMID: 30155443 PMCID: PMC6102369 DOI: 10.3389/fonc.2018.00311] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022] Open
Abstract
Lung cancer affects over 1. 8 million people worldwide and is the leading cause of cancer related mortality globally. Currently, diagnosis of lung cancer involves a combination of imaging and invasive biopsies to confirm histopathology. Non-invasive diagnostic techniques under investigation include "liquid biopsies" through a simple blood draw to develop predictive and prognostic biomarkers. A better understanding of circulating tumor cell (CTC) dissemination mechanisms offers promising potential for the development of techniques to assist in the diagnosis of lung cancer. Enumeration and characterization of CTCs has the potential to act as a prognostic biomarker and to identify novel drug targets for a precision medicine approach to lung cancer care. This review will focus on the current status of CTCs and their potential diagnostic and prognostic utility in this setting.
Collapse
Affiliation(s)
- Joanna Kapeleris
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Majid E. Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ian Vela
- Department of Urology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Australian Prostate Cancer Research Centre, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Liz Kenny
- School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Central Integrated Regional Cancer Service, Queensland Health, Brisbane, QLD, Australia
| | - Kenneth O'Byrne
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Sensitive detection of viable circulating tumor cells using a novel conditionally telomerase-selective replicating adenovirus in non-small cell lung cancer patients. Oncotarget 2018; 8:34884-34895. [PMID: 28432274 PMCID: PMC5471019 DOI: 10.18632/oncotarget.16818] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) have a crucial role in the clinical outcome of cancer patients. Detection of non-small cell lung cancer (NSCLC) using an antibody against epithelial cell adhesion molecule (EpCAM) in captured CTCs has low sensitivity; the loss of epithelial markers leads to underestimation of CTCs with mesenchymal phenotype. We propose a new approach for detection of viable CTCs, including those with epithelial-mesenchymal transition status (EMT-CTCs), using the new telomerase-specific replication-selective adenovirus (OBP-1101), TelomeScan F35. Peripheral venous blood samples and clinicopathological data were collected from 123 NSCLC patients. The sensitivity of CTC detection was 69.1%, and for patients with stage I, II, III and IV, it was 59.6%, 40.0%, 85.7%, and 75.0%, respectively. Among the EMT-CTC samples, 46% were vimentin positive and 39.0% of non-EMT-CTC samples were EpCAM positive. Patients testing positive for EMT-CTCs at baseline had poor response to chemotherapy (P = 0.025) and decreased progression-free survival (EMT-CTC positive vs. negative: 193 ± 47 days vs. 388 ± 47. days, P = 0.040) in comparison to those testing negative. TelomeScan F35 is a highly sensitive CTC detection system and will be a useful screening tool for early diagnosis of NSCLC patients. Mesenchymal-phenotype CTCs are crucial indicators of chemotherapeutic efficacy in NSCLC patients.
Collapse
|
20
|
Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice. Anal Cell Pathol (Amst) 2018; 2018:3506874. [PMID: 29682444 PMCID: PMC5848062 DOI: 10.1155/2018/3506874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/11/2023] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related mortality; nevertheless, there are few data regarding detection of circulating tumor cells (CTCs) in NSCLC, compared to other kinds of cancers in which their prognostic roles have already been defined. This difference is likely due to detection methods based on the epithelial marker expression which ignore CTCs undergoing epithelial-mesenchymal transition (CTCsEMT). Methods After optimization of the test with spiking experiments of A549 cells undergoing TGF-β1-induced EMT (A549EMT), the CTCsEMT were enriched by immunomagnetic depletion of leukocytes and then characterized by a RT-PCR assay based on the retrieval of epithelial and EMT-related genes. Blood samples from ten metastatic NSCLC patients before starting treatment and during chemotherapy were used to test this approach by longitudinal monitoring. Ten age- and sex-matched healthy subjects were also enrolled as controls. Results Recovery experiments of spiked A549EMT cells showed that the RT-PCR assay is a reliable method for detection of CTCsEMT. CTCsEMT were detected in three patients at baseline and in six patients after four cycles of cysplatin-based chemotherapy. Longitudinal monitoring of three patients showed that the CTCsEMT detection is related to poor therapeutic response. Conclusions The RT-PCR-based approach for the evaluation of CTCsEMT phenotype could be a promising and inexpensive tool to predict the prognosis and the therapeutic response in NSCLC patients.
Collapse
|
21
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
22
|
Wang L, Dumenil C, Julié C, Giraud V, Dumoulin J, Labrune S, Chinet T, Emile JF, He B, Giroux Leprieur E. Molecular characterization of circulating tumor cells in lung cancer: moving beyond enumeration. Oncotarget 2017; 8:109818-109835. [PMID: 29312651 PMCID: PMC5752564 DOI: 10.18632/oncotarget.22651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Molecular characterization of tumor cells is a key step in the diagnosis and optimal treatment of lung cancer. However, analysis of tumor samples, often corresponding to small biopsies, can be difficult and does not accurately reflect tumor heterogeneity. Recent studies have shown that isolation of circulating tumor cells (CTCs) is feasible in non-small cell lung cancer patients, even at early disease stages. The amount of CTCs corresponds to the metastatic potential of the tumor and to patient prognosis. Moreover, molecular analyses, even at the single-cell level, can be performed on CTCs. This review describes the technologies currently available for detecting and capturing CTCs, the potential for downstream molecular diagnostics, and the clinical applications of CTCs isolated from lung cancer patients as screening, prognostic, and predictive tools. Main limitations of CTCs are also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Catherine Julié
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Violaine Giraud
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Jennifer Dumoulin
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Sylvie Labrune
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Jean-François Emile
- Department of Pathology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| | - Biao He
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP - Ambroise Pare Hospital, Boulogne-Billancourt, France.,EA 4340 "Biomarqueurs en Cancérologie et Onco-Hématologie" UVSQ, Paris-Saclay University, Boulogne-Billancourt, France
| |
Collapse
|
23
|
Lu SH, Tsai WS, Chang YH, Chou TY, Pang ST, Lin PH, Tsai CM, Chang YC. Identifying cancer origin using circulating tumor cells. Cancer Biol Ther 2017; 17:430-8. [PMID: 26828696 PMCID: PMC4910938 DOI: 10.1080/15384047.2016.1141839] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin.
Collapse
Affiliation(s)
- Si-Hong Lu
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| | - Wen-Sy Tsai
- c Division of Colon and Rectal Surgery, Colorectal Section, Department of Surgery, Chang Gung Memorial Hospital, School of Medicine, Chang Gung University , Taiwan
| | - Ying-Hsu Chang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Teh-Ying Chou
- e Pathology and Laboratory Medicine Department, Taipei Veterans General Hospital , Taiwan
| | - See-Tong Pang
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Po-Hung Lin
- d Division of Urology, Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University , Taiwan
| | - Chun-Ming Tsai
- f Chest Department , Taipei Veterans General Hospital , Taiwan
| | - Ying-Chih Chang
- a Graduate Institute of Life Sciences, National Defense Medical Center , Taiwan.,b Genomics Research Center, Academia Sinica , Taiwan
| |
Collapse
|
24
|
O'Flaherty L, Wikman H, Pantel K. Biology and clinical significance of circulating tumor cell subpopulations in lung cancer. Transl Lung Cancer Res 2017; 6:431-443. [PMID: 28904887 DOI: 10.21037/tlcr.2017.07.03] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By identifying and tracking genetic changes in primary tumors and metastases, patients can be stratified for the most efficient therapeutic regimen by screening for known biomarkers. However, retrieving tissues biopsies is not always feasible due to tumor location or risk to patient. Therefore, a liquid biopsies approach offers an appealing solution to an otherwise invasive procedure. The rapid growth of the liquid biopsy field has been aided by improvements in the sensitivity and specificity of enrichment assays for isolating circulating tumor cells (CTCs) from normal surrounding blood cells. Furthermore, the identification and molecular characterization of CTCs has been shown in numerous studies to be of diagnostic and prognostic relevance in breast, prostate and colon cancer patients. Despite these advancements, and the highly metastatic nature of lung cancer, it remains a challenge to detect CTCs in advanced non-small cell lung cancer (NSCLC). It may be that loss of epithelial features, in favor of a mesenchymal phenotype, and the highly heterogeneous nature of NSCLC CTCs contribute to their evasion from current detection methods. By identifying a broader spectrum of biomarkers that could better differentiate the various NSCLC CTCs subpopulations, it may be possible to not only improve detection rates but also to shed light on which CTC clones are likely to drive metastatic initiation. Here we review the biology of CTCs and describe a number of proteins and genetic targets which could potentially be utilized for the dissemination of heterogenic subpopulations of CTCs in NSCLC.
Collapse
Affiliation(s)
- Linda O'Flaherty
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Strategies for Isolation and Molecular Profiling of Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:43-66. [PMID: 28560667 DOI: 10.1007/978-3-319-55947-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is the leading cause of death by disease worldwide, and metastasis is responsible for more than 90% of the mortality of cancer patients. Metastasis occurs when tumor cells leave the primary tumor, travel through the blood stream as circulating tumor cells (CTCs), and then colonize secondary tumors at sites distant from the primary tumor. The capture, identification, and analysis of CTCs offer both scientific and clinical benefits. On the scientific side, the analysis of CTCs could help elucidate possible genetic alterations and signaling pathway aberrations during cancer progression, which could then be used to find new methods to stop cancer progression. On the clinical side, non-invasive testing of a patient's blood for CTCs can be used for patient diagnosis and prognosis, as well as subsequent monitoring of treatment efficacy in routine clinical practice. Additionally, investigation of CTCs early in the progression of cancer may reveal targets for initial cancer detection and for anti-cancer treatment. This chapter will evaluate strategies and devices used for the isolation and identification of CTCs directly from clinical samples of blood. Recent progress in the understanding of the significance of both single CTCs and circulating tumor microemboli will be discussed. Also, advancements in the use of CTC-based liquid biopsy in clinical diagnosis and the potential of CTC-based molecular characterization for use in clinical applications will be summarized.
Collapse
|
26
|
Hamilton G, Rath B. Detection of circulating tumor cells in non-small cell lung cancer. J Thorac Dis 2016; 8:1024-8. [PMID: 27293809 DOI: 10.21037/jtd.2016.03.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerhard Hamilton
- Society for Research on Biology and Therapy of Cancer, A-1160 Vienna, Austria
| | - Barbara Rath
- Society for Research on Biology and Therapy of Cancer, A-1160 Vienna, Austria
| |
Collapse
|
27
|
Nel I, Gauler TC, Bublitz K, Lazaridis L, Goergens A, Giebel B, Schuler M, Hoffmann AC. Circulating Tumor Cell Composition in Renal Cell Carcinoma. PLoS One 2016; 11:e0153018. [PMID: 27101285 PMCID: PMC4839694 DOI: 10.1371/journal.pone.0153018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose Due to their minimal-invasive yet potentially current character circulating tumor cells (CTC) might be useful as a “liquid biopsy” in solid tumors. However, successful application in metastatic renal cell carcinoma (mRCC) has been very limited so far. High plasticity and heterogeneity of CTC morphology challenges currently available enrichment and detection techniques with EpCAM as the usual surface marker being underrepresented in mRCC. We recently described a method that enables us to identify and characterize non-hematopoietic cells in the peripheral blood stream with varying characteristics and define CTC subgroups that distinctly associate to clinical parameters. With this pilot study we wanted to scrutinize feasibility of this approach and its potential usage in clinical studies. Experimental Design Peripheral blood was drawn from 14 consecutive mRCC patients at the West German Cancer Center and CTC profiles were analyzed by Multi-Parameter Immunofluorescence Microscopy (MPIM). Additionally angiogenesis-related genes were measured by quantitative RT-PCR analysis. Results We detected CTC with epithelial, mesenchymal, stem cell-like or mixed-cell characteristics at different time-points during anti-angiogenic therapy. The presence and quantity of N-cadherin-positive or CD133-positive CTC was associated with inferior PFS. There was an inverse correlation between high expression of HIF1A, VEGFA, VEGFR and FGFR and the presence of N-cadherin-positive and CD133-positive CTC. Conclusions Patients with mRCC exhibit distinct CTC profiles that may implicate differences in therapeutic outcome. Prospective evaluation of phenotypic and genetic CTC profiling as prognostic and predictive biomarker in mRCC is warranted.
Collapse
Affiliation(s)
- Ivonne Nel
- Molecular Oncology Risk-Profile Evaluation, Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- ABA GmbH & Co. KG, BMZ2, Dortmund, Germany
| | - Thomas C. Gauler
- Molecular Oncology Risk-Profile Evaluation, Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- Department of Radiotherapy, University of Duisburg-Essen, Essen, Germany
| | - Kira Bublitz
- Molecular Oncology Risk-Profile Evaluation, Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Lazaros Lazaridis
- Molecular Oncology Risk-Profile Evaluation, Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - André Goergens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Martin Schuler
- Department of Radiotherapy, University of Duisburg-Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
| | - Andreas-Claudius Hoffmann
- Molecular Oncology Risk-Profile Evaluation, Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- Department of Medical Oncology, West German Cancer Center, University Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
28
|
Schneck H, Gierke B, Uppenkamp F, Behrens B, Niederacher D, Stoecklein NH, Templin MF, Pawlak M, Fehm T, Neubauer H. EpCAM-Independent Enrichment of Circulating Tumor Cells in Metastatic Breast Cancer. PLoS One 2015; 10:e0144535. [PMID: 26695635 PMCID: PMC4687932 DOI: 10.1371/journal.pone.0144535] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) are the potential precursors of metastatic disease. Most assays established for the enumeration of CTCs so far-including the gold standard CellSearch-rely on the expression of the cell surface marker epithelial cell adhesion molecule (EpCAM). But, these approaches may not detect CTCs that express no/low levels of EpCAM, e.g. by undergoing epithelial-to-mesenchymal transition (EMT). Here we present an enrichment strategy combining different antibodies specific for surface proteins and extracellular matrix (ECM) components to capture an EpCAMlow/neg cell line and EpCAMneg CTCs from blood samples of breast cancer patients depleted for EpCAM-positive cells. The expression of respective proteins (Trop2, CD49f, c-Met, CK8, CD44, ADAM8, CD146, TEM8, CD47) was verified by immunofluorescence on EpCAMpos (e.g. MCF7, SKBR3) and EpCAMlow/neg (MDA-MB-231) breast cancer cell lines. To test antibodies and ECM proteins (e.g. hyaluronic acid (HA), collagen I, laminin) for capturing EpCAMneg cells, the capture molecules were first spotted in a single- and multi-array format onto aldehyde-coated glass slides. Tumor cell adhesion of EpCAMpos/neg cell lines was then determined and visualized by Coomassie/MitoTracker staining. In consequence, marginal binding of EpCAMlow/neg MDA-MB-231 cells to EpCAM-antibodies could be observed. However, efficient adhesion/capturing of EpCAMlow/neg cells could be achieved via HA and immobilized antibodies against CD49f and Trop2. Optimal capture conditions were then applied to immunomagnetic beads to detect EpCAMneg CTCs from clinical samples. Captured CTCs were verified/quantified by immunofluorescence staining for anti-pan-Cytokeratin (CK)-FITC/anti-CD45 AF647/DAPI. In total, in 20 out of 29 EpCAM-depleted fractions (69%) from 25 metastatic breast cancer patients additional EpCAMneg CTCs could be identified [range of 1-24 CTCs per sample] applying Trop2, CD49f, c-Met, CK8 and/or HA magnetic enrichment. EpCAMneg dual-positive (CKpos/CD45pos) cells could be traced in 28 out of 29 samples [range 1-480]. By single-cell array-based comparative genomic hybridization we were able to demonstrate the malignant nature of one EpCAMneg subpopulation. In conclusion, we established a novel enhanced CTC enrichment strategy to capture EpCAMneg CTCs from clinical blood samples by targeting various cell surface antigens with antibody mixtures and ECM components.
Collapse
Affiliation(s)
- Helen Schneck
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Berthold Gierke
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Frauke Uppenkamp
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Bianca Behrens
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Nikolas H. Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Markus F. Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Michael Pawlak
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | | |
Collapse
|
29
|
Zhang Z, Ramnath N, Nagrath S. Current Status of CTCs as Liquid Biopsy in Lung Cancer and Future Directions. Front Oncol 2015; 5:209. [PMID: 26484313 PMCID: PMC4588111 DOI: 10.3389/fonc.2015.00209] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells (CTCs) have garnered a lot of attention in the past few decades. Isolation of these rare cells from the billions of blood cells has been a challenge until recent times. With the advent of new sensitive technologies that permit live cell isolation and downstream genomic analysis, the existing paradigm of CTC research has evolved to explore clinical utility of these cells. CTCs have been identified as prognostic and pharmacodynamic biomarkers in many solid tumors, including lung cancer. As a means of liquid biopsy, CTCs could play a major role in the development of personalized medicine and targeted therapies. This review discusses the state of various isolation strategies, cell separation techniques and key studies that illustrate the application of liquid biopsy to lung cancer.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Chemical Engineering, University of Michigan , Ann Arbor, MI , USA
| | - Nithya Ramnath
- Department of Internal Medicine, University of Michigan , Ann Arbor, MI , USA ; Veterans Administration Ann Arbor Healthcare System , Ann Arbor, MI , USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan , Ann Arbor, MI , USA ; Translational Oncology Program, University of Michigan , Ann Arbor, MI , USA
| |
Collapse
|
30
|
Hanssen A, Loges S, Pantel K, Wikman H. Detection of Circulating Tumor Cells in Non-Small Cell Lung Cancer. Front Oncol 2015; 5:207. [PMID: 26442219 PMCID: PMC4585270 DOI: 10.3389/fonc.2015.00207] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/07/2015] [Indexed: 01/05/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths that frequently metastasizes prior to disease diagnosis. Circulating tumor cells (CTCs) are found in many different types of epithelial tumors and are of great clinical interest in terms of prognosis and therapy intervention. Here, we present and discuss epithelial cell adhesion molecule-dependent and -independent capture of CTCs in non-small cell lung cancer (NSCLC) and the clinical relevance of CTC detection and characterization. Taking blood samples and analyzing CTCs as "liquid biopsy" might be a far less invasive diagnostic strategy than biopsies of lung tumors or metastases. Moreover, sequential blood sampling allows to study the dynamic changes of tumor cells during therapy, in particular the development of resistant tumor cell clones.
Collapse
Affiliation(s)
- Annkathrin Hanssen
- BMT with Section of Pneumology, Department of Tumor Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Sonja Loges
- BMT with Section of Pneumology, Department of Tumor Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany ; BMT with Section of Pneumology, Department of Hematology and Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Klaus Pantel
- BMT with Section of Pneumology, Department of Tumor Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Harriet Wikman
- BMT with Section of Pneumology, Department of Tumor Biology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|