1
|
LI S, ZHANG X. [Drug Resistance Mechanism and Therapeutic Strategy of Targeted Therapy of
Non-small Cell Lung Cancer with MET Alterations]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:684-691. [PMID: 37985154 PMCID: PMC10600752 DOI: 10.3779/j.issn.1009-3419.2023.102.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 11/22/2023]
Abstract
Mesenchymal to epithelial transition factor (MET) gene alterations involve in the proliferation, invasion, and metastasis of non-small cell lung cancer. MET-tyrosine kinase inhibitors (TKIs) have been approved to treat non-small cell lung cancer with MET alterations, and resistance to these TKIs is inevitable. Molecular mechanisms of resistance to MET-TKIs are completely unclear. The review focused on potential mechanisms of MET-TKIs resistance and therapeutics strategies to delay and prevent resistance.
.
Collapse
|
2
|
Fan Y, Sun R, Wang Z, Zhang Y, Xiao X, Liu Y, Xin B, Xiong H, Lu D, Ma J. Detection of MET amplification by droplet digital PCR in peripheral blood samples of non-small cell lung cancer. J Cancer Res Clin Oncol 2022; 149:1667-1677. [PMID: 35583827 DOI: 10.1007/s00432-022-04048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Mesenchymal-epithelial transition (MET) amplification is one of the mechanisms accounting for the resistance of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in lung cancer patients, as well as the poor prognosis. Fluorescence in situ hybridization (FISH) is the most widely used method for MET amplification detection. However, it is inapplicable when tissue samples were unavailable. Herein, we assessed the value of droplet digital PCR (ddPCR) in MET copy number gain (CNG) detection in non-small cell lung cancer (NSCLC) patients treated with EGFR-TKIs. MATERIALS AND METHODS A total of 103 cancer tissues and the paired peripheral blood samples from NSCLC patients were collected for MET CNG detection using ddPCR. In parallel, MET amplification in tissue samples was verified by FISH. Also, the relationships between MET CNG and EGFR T790M, as well as the EGFR-TKI resistance were also evaluated using Chi-square or Fisher's exact tests. RESULT The concordance rate of ddPCR and FISH in detecting MET CNG in tissue samples was 100% (102/102), and it was 94.17% (97/103) for ddPCR method in detecting the MET CNG among peripheral blood and tissue samples. No statistical difference was observed between MET amplification and EGFR T790M (p = 0.65), while MET amplification rate was significantly increased in patients with resistance to third generations of EGFR-TKIs as compared with patients with resistance to first/second EGFR-TKIs (p < 0.05). CONCLUSIONS ddPCR is an alternative method to detect MET CNG in both tissues and peripheral blood samples, which is of worthy in clinical promotion.
Collapse
Affiliation(s)
- Ying Fan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China.,Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Rui Sun
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Zhizhong Wang
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China.,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China
| | - Yuying Zhang
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Xiao Xiao
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Yizhe Liu
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Beibei Xin
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Hui Xiong
- Shanghai Yuanqi Biomedical Technology Co., Ltd., Shanghai, 201403, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, Shanghai, China. .,NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, 400014, China.
| | - Jie Ma
- Department of Molecular Pathology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450003, China. .,Henan Key Laboratory of Molecular Pathology, Zhengzhou, 450003, China.
| |
Collapse
|
3
|
Moes-Sosnowska J, Chorostowska-Wynimko J. Fibroblast Growth Factor Receptor 1-4 Genetic Aberrations as Clinically Relevant Biomarkers in Squamous Cell Lung Cancer. Front Oncol 2022; 12:780650. [PMID: 35402233 PMCID: PMC8991910 DOI: 10.3389/fonc.2022.780650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) inhibitors (FGFRis) are a potential therapeutic option for squamous non-small cell lung cancer (Sq-NSCLC). Because appropriate patient selection is needed for targeted therapy, molecular profiling is key to discovering candidate biomarker(s). Multiple FGFR aberrations are present in Sq-NSCLC tumors-alterations (mutations and fusions), amplification and mRNA/protein overexpression-but their predictive potential is unclear. Although FGFR1 amplification reliability was unsatisfactory, FGFR mRNA overexpression, mutations, and fusions are promising. However, currently their discriminatory power is insufficient, and the available clinical data are from small groups of Sq-NSCLC patients. Here, we focus on FGFR aberrations as predictive biomarkers for FGFR-targeting agents in Sq-NSCLC. Known and suggested molecular determinants of FGFRi resistance are also discussed.
Collapse
Affiliation(s)
- Joanna Moes-Sosnowska
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
4
|
Garon EB, Brodrick P. Targeted Therapy Approaches for MET Abnormalities in Non-Small Cell Lung Cancer. Drugs 2021; 81:547-554. [PMID: 33638808 DOI: 10.1007/s40265-021-01477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The tyrosine kinase receptor mesenchymal epithelial transition (MET) is a proto-oncogene that, through the activation of the MET-hepatocyte growth factor (HGF) pathway, encodes a variety of biological processes, including cell development, proliferation, invasion, and migration. Abnormal activation of the MET pathway, occurring through MET protein overexpression, and gene amplification or mutation, can contribute to oncogenesis and has been implicated in non-small cell lung cancer (NSCLC). Though it is associated with poor clinical outcome in NSCLCs, MET overexpression and its role as a therapeutic target remains somewhat elusive due to discrepancies in its occurrence. Unlike MET overexpression, MET amplification has demonstrated a stronger potential as a biomarker for therapeutic treatment, with clinical data indicating a compelling connection between a high MET gene copy number and a high response rate to targeted therapies. However, MET exon 14 skipping mutations, occurring in 3%-4 % of lung adenocarcinomas, are of particular interest, as tumors harboring these mutations have shown a significant response to MET inhibitors. Following the discovery of MET as a potential therapeutic target, extensive clinical studies have proposed three approaches to targeting MET: (1) MET tyrosine kinase inhibitors (TKIs), including crizotinib, capmatinib, tepotinib, savolinitib, and cabozantinib; (2) MET or HGF monoclonal antibodies, including emibetuzumab and ficlatuzumab; and (3) MET or HGF antibody drug conjugates, including telisotuzumab. Herein, we discuss the relevant clinical trials, particularly focusing on the efficacy as well as the safety and tolerability of the treatment options, in the promising field of targeting MET in NSCLC.
Collapse
Affiliation(s)
- Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Paige Brodrick
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Seto T, Ohashi K, Sugawara S, Nishio M, Takeda M, Aoe K, Moizumi S, Nomura S, Tajima T, Hida T. Capmatinib in Japanese patients with MET exon 14 skipping-mutated or MET-amplified advanced NSCLC: GEOMETRY mono-1 study. Cancer Sci 2021; 112:1556-1566. [PMID: 33506571 PMCID: PMC8019204 DOI: 10.1111/cas.14826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
MET mutations leading to exon 14 skipping (METΔex14) are strong molecular drivers for non-small-cell lung cancer (NSCLC). Capmatinib is a highly potent, selective oral MET inhibitor that showed clinically meaningful efficacy and a manageable safety profile in a global phase II study (GEOMETRY mono-1, NCT02414139) in patients with advanced METΔex14-mutated/MET-amplified NSCLC. We report results of preplanned analyses of 45 Japanese patients according to MET status (METΔex14-mutated or MET-amplified) and line of therapy (first- [1L] or second-/third-line [2/3L]). The starting dose was 400 mg twice daily. The primary endpoint was the objective response rate (ORR) assessed by a blinded independent review committee. A key secondary endpoint was duration of response (DOR). Among METΔex14-mutated patients, in the 1L group, one patient achieved partial response (DOR of 4.24 months) and the other had stable disease. In the 2/3L group, the ORR was 36.4% (95% confidence interval [CI] 10.9%-69.2%), median DOR was not evaluable, and progression-free survival was 4.70 months. One patient (2/3L group) showed partial resolution of brain lesions per independent neuroradiologist review. In MET-amplified patients with a MET gene copy number of ≥10, the ORR was 100% (2/2 patients) in the 1L group and 45.5% (5/11 patients) in the 2/3L group, with DOR of 8.2 and 8.3 months, respectively. Common treatment-related adverse events among the 45 Japanese patients were blood creatinine increased (53.3%), nausea (35.6%), and oedema peripheral (31.1%); most were grade 1/2 severity. In conclusion, capmatinib was effective and well tolerated by Japanese patients with METΔex14/MET-amplified NSCLC, consistent with the overall population.
Collapse
Affiliation(s)
- Takashi Seto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kadoaki Ohashi
- Department of Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Makoto Nishio
- Thoracic Center, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Masayuki Takeda
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Yamaguchi, Japan
| | - Sanae Moizumi
- Development Division, Novartis Pharma K.K., Tokyo, Japan
| | - Satoshi Nomura
- Development Division, Novartis Pharma K.K., Tokyo, Japan
| | - Takeshi Tajima
- Development Division, Novartis Pharma K.K., Tokyo, Japan
| | - Toyoaki Hida
- Department of Thoracic Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| |
Collapse
|
6
|
Pruis MA, von der Thüsen JH, Dubbink HJ. MET immunochemistry: a reliable screening tool for MET exon 14 skipping mutations in non-small cell lung cancer? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1538. [PMID: 33313283 PMCID: PMC7729352 DOI: 10.21037/atm-20-3763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Melinda A Pruis
- Department of Pulmonary Diseases, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | |
Collapse
|
7
|
Bylicki O, Paleiron N, Assié JB, Chouaïd C. Targeting the MET-Signaling Pathway in Non-Small-Cell Lung Cancer: Evidence to Date. Onco Targets Ther 2020; 13:5691-5706. [PMID: 32606781 PMCID: PMC7306460 DOI: 10.2147/ott.s219959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
The c-MET proto-oncogene (MET) plays an important role in lung oncogenesis, affecting cancer-cell survival, growth and invasiveness. The MET receptor in non-small-cell lung cancer (NSCLC) is a potential therapeutic target. The development of high-output next-generation sequencing techniques has enabled better identification of anomalies in the MET pathway, like the MET exon-14 (METex14) mutation. Moreover, analyses of epidermal growth factor-receptor (EGFR) and mechanisms of resistance to tyrosine-kinase inhibitors (TKIs) demonstrated the importance of MET amplification as an escape mechanism in patients with TKI-treated EGFR-mutated NSCLCs. This review summarizes the laboratory findings on MET and its anomalies, trial results on METex14 alterations and MET amplification in non-EGFR mutated NSCLCs, and acquired resistance to TKI in EGFR-mutated NSCLCs. The outcomes of the first trials with anti-MET agents on non-selected NSCLC patients or those selected for MET overexpression were disappointing. Two situations seem the most promising today for the use of anti-MET agents to treat these patients: tumors harboring METex14 and those EGFR-sensitive mutation mutated under TKI-EGFR with a MET-amplification mechanism of resistance or EGFR-resistance mutation.
Collapse
Affiliation(s)
- Olivier Bylicki
- Respiratory Disease Unit, HIA Sainte Anne, Toulon, France
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
| | | | - Jean-Baptiste Assié
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
- Pneumology Department, Centre Hospitalier Intercommunal De Créteil, Créteil, France
- Cordeliers Research Center, Inserm, Functional Genomics of Solid Tumors Laboratory, Sorbonne University, University of Paris, Paris, France
| | - Christos Chouaïd
- University Paris–Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France
- Pneumology Department, Centre Hospitalier Intercommunal De Créteil, Créteil, France
| |
Collapse
|
8
|
Kyakulaga AH, Aqil F, Munagala R, Gupta RC. Synergistic combinations of paclitaxel and withaferin A against human non-small cell lung cancer cells. Oncotarget 2020; 11:1399-1416. [PMID: 32362998 PMCID: PMC7185067 DOI: 10.18632/oncotarget.27519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/17/2020] [Indexed: 01/15/2023] Open
Abstract
Platinum-taxane combination chemotherapy still represents the standard of care for advanced non-small cell lung cancer (NSCLC) with no targetable driver mutations. However, the efficacy of these drugs has plateaued at 10–14 months primarily due to dose-limiting toxicity, chemoresistance, and metastasis. Here, we explored the effects of withaferin A (WFA) alone and in combination with paclitaxel (PAC) on the growth, proliferation, migration, and invasion of human NSCLC cells. We show that the sensitivity of H1299 and A549 cells to concomitant treatment with PAC and WFA was greater than that of either PAC or WFA alone. Using the combination index and dose-reduction index, we demonstrated that various combinations (1:40, 1:20, 1:10) of PAC to WFA, respectively, were highly synergistic. In addition, PAC+WFA co-treatment synergistically inhibited colony formation, migration, invasion and increased the induction of apoptosis in H1299 and A549 cells. Interestingly, the synergism of PAC and WFA was not schedule-dependent but was enhanced when cells were pretreated with WFA indicating a chemo-sensitizing effect. Importantly, WFA was active against both PAC-sensitive (TS-A549) and PAC-resistant (TR-A549) cells both in vitro and in vivo. Mechanistically, WFA inhibits the proliferation of NSCLC cells via thiol oxidation. The effects of WFA were inhibited in the presence of N-acetyl cysteine and other thiol donors. Taken together, our results demonstrate the efficacy of WFA alone or alongside PAC on NSCLC cells and provide a strong rationale for further detailed testing in clinically relevant models for the development of PAC+WFA combination as an alternative therapeutic strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Al Hassan Kyakulaga
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Thomas P, Vincent B, George C, Joshua JM, Pavithran K, Vijayan M. A comparative study on erlotinib & gefitinib therapy in non-small cell lung carcinoma patients. Indian J Med Res 2019; 150:67-72. [PMID: 31571631 PMCID: PMC6798608 DOI: 10.4103/ijmr.ijmr_1896_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/24/2022] Open
Abstract
Background & objectives Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) have been evaluated in patients with advanced non-small cell lung cancer (NSCLC). Erlotinib and gefitinib are the first-generation EGFR-TKIs for patients with NSCLC. However, there is a paucity of studies comparing the effectiveness of these two drugs. Hence, this study was aimed to compare the effectiveness and safety of erlotinib and gefitinib in NSCLC patients. Methods This study included 71 NSCLC patients who received EGFR-TKIs between 2013 and 2016. Adverse drug reaction of both erlotinib (n=37) and gefitinib (n=34) was determined and graded according to Common Terminology Criteria for Adverse Events grading system. Effectiveness was measured using response evaluation criteria in solid tumours and progression-free survival (PFS). Pharmacoeconomic analysis was performed by cost-effective analysis. Results When comparing safety profile, both the drugs had similar adverse events except for dermal side effects such as acneiform eruption (51.4%), rash (54.05%) and mucositis (59.5%) for erlotinib and 20.6, 26.5 and 29.4 per cent for gefitinib, respectively. The PFS of the two drugs was compared to differentiate the effectiveness of erlotinib and gefitinib. There was no significant difference between the effectiveness of the two drugs. The pharmacoeconomic analysis showed that gefitinib was more cost-effective than erlotinib. Interpretation & conclusions This study showed that erlotinib and gefitinib had similar effectiveness but gefitinib had a better safety profile compared to erlotinib. Therefore, gefitinib could be considered a better option for NSCLC patients compared to erlotinib. However, further studies need to be done with a large sample to confirm these findings.
Collapse
Affiliation(s)
- Preenumol Thomas
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bini Vincent
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Christeena George
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Julie Mariam Joshua
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - K. Pavithran
- Department of Medical Oncology & Haematology, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Meenu Vijayan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
10
|
Lee LYW, Mohammad S, Starkey T, Lee SM. STAT3 cyclic oligonucleotide decoy-a new therapeutic avenue for NSCLC? Transl Lung Cancer Res 2018; 7:S381-S384. [PMID: 30705862 DOI: 10.21037/tlcr.2018.09.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Lennard Y W Lee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Summaya Mohammad
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Thomas Starkey
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Siow-Ming Lee
- Department of Oncology, University College London Hospitals, London, UK.,Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, London, UK
| |
Collapse
|
11
|
Zhang X, Zheng X, Lou Y, Wang H, Xu J, Zhang Y, Han B. β-catenin inhibitors suppress cells proliferation and promote cells apoptosis in PC9 lung cancer stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11968-11978. [PMID: 31966561 PMCID: PMC6966044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/20/2017] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effect of β-catenin inhibitors on cells proliferation and apoptosis in lung cancer stem cells (LCSCs). Drug-resistance PC9 cells were induced by escalation of cisplatin repeated treatment, and then PC9 LCSCs were constructed by Sphere Formation methods. Membrane expression of OCT4, SOX2, CD44, CD133 and β-Catenin were detected by Immunofluorescent staining, and mRNA of CSCs marker genes and Wnt/β-Catenin target genes were determined by qPCR assay. PC9 LCSCs were nurtured for 5 days (Day 5) and then β-catenin inhibitor pyrvinium pamoate (PP) with IC50 concentration (0.221 µM) and ICG-100 with IC50 concentration (2.620 µM) were added and cultured for another 2 days (Day 7), respectively. CCK8 and AV/PI assays were performed to detect cells proliferation and apoptosis. We successfully constructed PC9 LCSCs and observed that OCT4, SOX2, CD44, CD133 and β-Catenin expressed on all cells, and stem-cell marker genes as well as Wnt/β-Catenin signaling pathway genes mRNA were all elevated in PC9 LCSCs compared to PC9 parent cells. Cells proliferation by CCK8 assay was decreased while apoptosis rate by AV/PI assay was increased in PP treatment group compared with control, C-Caspase 3 and Bcl-2 protein expression also supported the apoptosis results. Most of the stem-cell marker genes and Wnt/β-Catenin signaling pathway genes mRNAs were decreased accordingly. ICG-001 also inhibited cells proliferation while induced cells apoptosis in PC9 LCSCs. In conclusion, β-Catenin inhibitors suppressed the proliferation and promoted the apoptosis of LCSCs, which shed light on a new potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Xueyan Zhang
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Xiaoxuan Zheng
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Yuqing Lou
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Huimin Wang
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Jianlin Xu
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Yanwei Zhang
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| | - Baohui Han
- Department of Pulmonary Diseases, Shanghai Chest Hospital, Shanghai Jiaotong University Shanghai 200030, China
| |
Collapse
|
12
|
Lau KW, Seng C, Lim TKH, Tan DSW. Expanded molecular interrogation for potential actionable targets in non-squamous non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:372. [PMID: 29057232 PMCID: PMC5635263 DOI: 10.21037/atm.2017.08.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapies has established new standards of care for defined molecular subsets of non-small cell lung cancer (NSCLC). Not only has this led to significant changes in the routine clinical management of lung cancer e.g., multiplexed genomic testing, but it has provided important principles and benchmarks for determining "actionability". At present, the clinical paradigms are most evolved for EGFR mutations and ALK rearrangements, where multiple randomized phase III trials have determined optimal treatment strategies in both treatment naïve and resistant settings. However, this may not always be feasible with low prevalence alterations e.g., ROS1 and BRAF mutations. Another emerging observation is that not all targets are equally "actionable", necessitating a rigorous preclinical, clinical and translational framework to prosecute new targets and drug candidates. In this review, we will cover the role of targeted therapies for NSCLC harbouring BRAF, MET, HER2 and RET alterations, all of which have shown promise in non-squamous non-small cell lung cancer (ns-NSCLC). We further review some early epigenetic targets in NSCLC, an area of emerging interest. With increased molecular segmentation of lung cancer, we discuss the upcoming challenges in drug development and implementation of precision oncology approaches, especially in light of the complex and rapidly evolving therapeutic landscape.
Collapse
Affiliation(s)
- Kah Weng Lau
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- Institute of Molecular and Cell Biology, ASTAR, Singapore
| | - Claudia Seng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Tony K H Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer Therapeutics Research Laboratory, Singapore
- Genome Institute of Singapore, ASTAR, Singapore
| |
Collapse
|
13
|
Zhang G, Wang H, Ma Z. [Recent Advances and Prospect of Advanced Non-small Cell Lung Cancer Targeted
Therapy: Focus on Small Molecular Tyrosine Kinase Inhibitors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:278-286. [PMID: 28442018 PMCID: PMC5999678 DOI: 10.3779/j.issn.1009-3419.2017.04.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
At present the treatment of advanced non-small cell lung cancer enters a targeted era and develops rapidly. New drugs appear constantly. Small molecular tyrosine kinase inhibitors have occupied the biggest piece of the territory, which commonly have a clear biomarker as predictor, and show remarkable effect in specific molecular classification of patients. The epidermal growth factor tyrosine kinase inhibitors such as gefitinib, erlotinib, icotinib and anaplastic lymphoma kinase tyrosine kinase inhibitors crizotinib have brought a milestone advance. In recent years new generations of tyrosine kinase inhibitors have achieved a great success in patients with acquired resistance to the above two kinds of drugs. At the same time new therapeutic targets are constantly emerging. So in this paper, we reviewed and summarized the important drugs and clinical trails on this topic, and made a prospect of the future development.
Collapse
Affiliation(s)
- Guowei Zhang
- Department of Internal Medicine, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital,
Zhengzhou 450003, China
| | - Huijuan Wang
- Department of Internal Medicine, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital,
Zhengzhou 450003, China
| | - Zhiyong Ma
- Department of Internal Medicine, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital,
Zhengzhou 450003, China
| |
Collapse
|
14
|
Catenacci DVT, Ang A, Liao WL, Shen J, O'Day E, Loberg RD, Cecchi F, Hembrough T, Ruzzo A, Graziano F. MET tyrosine kinase receptor expression and amplification as prognostic biomarkers of survival in gastroesophageal adenocarcinoma. Cancer 2016; 123:1061-1070. [PMID: 27926778 PMCID: PMC5339041 DOI: 10.1002/cncr.30437] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND MET gene amplification and Met protein overexpression may be associated with a poor prognosis. The MET/Met status is typically determined with fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), respectively. Targeted proteomics uses mass spectrometry–based selected reaction monitoring (SRM) to accurately quantitate Met expression. FISH, IHC, and SRM analyses were compared to characterize the prognostic value of MET/Met in gastroesophageal adenocarcinoma (GEC). METHODS Samples from 447 GEC patients were analyzed for MET gene amplification (FISH) and Met protein expression (IHC and SRM). Cox proportional hazards models and Kaplan‐Meier estimates were applied to explore relations between Met, overall survival (OS), and clinical/pathological characteristics. Spearman's rank coefficient was used to assess the correlation between parameters. RESULTS Patients with MET‐amplified tumors had worse OS when: the MET/centromere enumeration probe for chromosome 7 FISH ratio was ≥ 2 (hazard ratio [HR], 3.13; 95% confidence interval [CI], 1.84‐5.33), the MET gene copy number was ≥5 (HR, 2.51; 95% CI, 1.45‐4.34), or ≥ 10% of the cells had ≥15 copies (HR, 4.28; 95% CI, 2.18‐8.39). Similar observations were made with Met protein overexpression by IHC (≥1 + intensity in ≥ 25% of the tumor cell membrane: HR, 1.39; 95% CI, 1.04‐1.86) or SRM (≥400 amol/μg: HR, 1.76; 95% CI, 1.06‐2.90). A significant correlation was observed between MET FISH/Met IHC, MET FISH/Met SRM, and Met IHC/Met SRM; only MET FISH and Met SRM were independent negative prognostic biomarkers in multivariate analyses. CONCLUSIONS MET amplification and overexpression, assessed by multiple methods, were associated with a worse prognosis in univariate analyses. However, only MET amplification by FISH and Met expression by SRM were independent prognostic biomarkers. Compared with IHC, SRM may provide an added benefit for informed decisions about Met‐targeted therapy. Cancer 2017;123:1061–70. © 2016 American Cancer Society. In a large study, MET gene amplification, Met protein overexpression, or both, as assessed by various assays, are associated with a poor prognosis in univariate analyses. However, only MET amplification by fluorescence in situ hybridization and Met expression by selected reaction monitoring mass spectrometry are independent prognostic biomarkers; compared with immunohistochemistry, selected reaction monitoring may provide an added benefit for informed decisions about Met‐targeted therapy.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Agnes Ang
- Amgen, Inc, Thousand Oaks, California
| | | | - Jing Shen
- Amgen, Inc, Thousand Oaks, California
| | - Emily O'Day
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | | | | | - Annamaria Ruzzo
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Francesco Graziano
- Department of Onco-Hematology, Azienda Ospedali Riuniti Marche Nord, Pesaro, Italy
| |
Collapse
|
15
|
Tyrosine Kinase Receptor Landscape in Lung Cancer: Therapeutical Implications. DISEASE MARKERS 2016; 2016:9214056. [PMID: 27528792 PMCID: PMC4977389 DOI: 10.1155/2016/9214056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/24/2022]
Abstract
Lung cancer is a heterogeneous disease responsible for the most cases of cancer-related deaths. The majority of patients are clinically diagnosed at advanced stages, with a poor survival rate. For this reason, the identification of oncodrivers and novel biomarkers is decisive for the future clinical management of this pathology. The rise of high throughput technologies popularly referred to as “omics” has accelerated the discovery of new biomarkers and drivers for this pathology. Within them, tyrosine kinase receptors (TKRs) have proven to be of importance as diagnostic, prognostic, and predictive tools and, due to their molecular nature, as therapeutic targets. Along this review, the role of TKRs in the different lung cancer histologies, research on improvement of anti-TKR therapy, and the current approaches to manage anti-TKR resistance will be discussed.
Collapse
|