1
|
Ohta T. Characterization of breast changes in the early gestational period on automated breast ultrasound. J Med Ultrason (2001) 2024; 51:103-108. [PMID: 37875639 PMCID: PMC10978629 DOI: 10.1007/s10396-023-01370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 10/26/2023]
Abstract
PURPOSE This study was conducted to determine the characteristics of milk duct development in early pregnancy on ultrasound images. METHODS Automated breast ultrasound (ABUS) images used for breast cancer screening in 332 pregnant women were evaluated retrospectively to determine when and how ductal development becomes evident on ultrasonography. The diagnostic criteria used for mammary gland changes during the gestational period were extension of the ducts to the margins of the breast where little or no echogenic fibroglandular tissue is seen on sonograms and/or the appearance of ductal structures running along the ascending Cooper's ligament tapering off or ending in a blind end at the superficial layer of the superficial fascia. The correlations between gestational stage and the prevalence of these criteria were verified by Spearman's rank correlation coefficient (ρ). Assessments were performed by a single radiologist with experience reading ABUS images. RESULTS With a few exceptions, the prevalence of the above findings increased sharply beginning at 10 weeks, and then increased with progression of gestation, reaching a plateau after 20 weeks (ρ = 0.766, P < 0.00001). CONCLUSION The findings in this study suggested that development of the milk ducts in early pregnancy can be observed using ABUS. These findings will be useful to gain a better understanding of breast ultrasound imaging characteristics during pregnancy.
Collapse
Affiliation(s)
- Tomoyuki Ohta
- Radiology Department, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara City, Tochigi, 329-2763, Japan.
| |
Collapse
|
2
|
Antmen E, Ermis M, Kuren O, Beksac K, Irkkan C, Hasirci V. Nuclear Deformability of Breast Cells Analyzed from Patients with Malignant and Benign Breast Diseases. ACS Biomater Sci Eng 2023; 9:1629-1643. [PMID: 36706038 DOI: 10.1021/acsbiomaterials.2c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Breast cancer is a heterogeneous and dynamic disease, in which cancer cells are highly responsive to alterations in the microenvironment. Today, conventional methods of detecting cancer give a rather static image of the condition of the disease, so dynamic properties such as invasiveness and metastasis are difficult to capture. In this study, conventional molecular-level evaluations of the patients with breast adenocarcinoma were combined with in vitro methods on micropatterned poly(methyl methacrylate) (PMMA) biomaterial surfaces that deform cells. A correlation between deformability of the nuclei and cancer stemness, invasiveness, and metastasis was sought. Clinical patient samples were from regions of the breast with different proximities to the tumor. Responses at the single-cell level toward the micropatterned surfaces were studied using CD44/24, epithelial cell adhesion marker (EpCAM), MUC1, and PCK. Results showed that molecular markers and shape descriptors can discriminate the cells from different proximities to the tumor center and from different patients. The cells with the most metastatic and invasive properties showed both the highest deformability and the highest level of metastatic markers. In conclusion, by using a combination of molecular markers together with nuclear deformation, it is possible to improve detection and separation of subpopulations in heterogenous breast cancer specimens at the single-cell level.
Collapse
Affiliation(s)
- Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara06800, Turkey
| | - Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara06800, Turkey
| | - Ozgur Kuren
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara06800, Turkey
| | - Kemal Beksac
- Department of General Surgery, Ankara Oncology Hospital, Yenimahalle, Ankara06800, Turkey
| | - Cigdem Irkkan
- Department of Pathology, Ankara Oncology Hospital, Yenimahalle, Ankara06800, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara06800, Turkey
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University (ACU), Istanbul34752, Turkey
- ACU Biomaterials Center, Acibadem Mehmet Ali Aydinlar University (ACU), Atasehir, Istanbul34752, Turkey
| |
Collapse
|
3
|
Abstract
BACKGROUND Breast cancer is a malignancy that occurs in cells in the breast tissue where cells in the breast divide and grow out of control, invade surrounding tissues, or spread (metastasize) to distant areas of the body. METHOD This review was systematically carried out through PubMed, Scopus, ScienceDirect, and Google Scholar websites in English and Indonesian using the keyword content of the article, obtaining 21 selected articles. This review demonstrates honey's promising mechanism of combined synergistic effect for breast cancer management. CONCLUSION Antioxidants in honey intercept free radicals of phenolic compounds which are the main factors responsible for the antioxidant activity of honey. The antimicrobial activity in most honey is due to the enzymatic production of hydrogen peroxide, and its anti-cancer properties are discussed in this section.
Collapse
Affiliation(s)
- Andi Nilawati Usman
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| | - Mardiana Ahmad
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Guha L, Bhat IA, Bashir A, Rahman JU, Pottoo FH. Nanotechnological Approaches for the Treatment of Triple-Negative Breast Cancer: A Comprehensive Review. Curr Drug Metab 2022; 23:781-799. [PMID: 35676850 DOI: 10.2174/1389200223666220608144551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most prevalent cancer in women around the world, having a sudden spread nowadays because of the poor sedentary lifestyle of people. Comprising several subtypes, one of the most dangerous and aggressive ones is triple-negative breast cancer or TNBC. Even though conventional surgical approaches like single and double mastectomy and preventive chemotherapeutic approaches are available, they are not selective to cancer cells and are only for symptomatic treatment. A new branch called nanotechnology has emerged in the last few decades that offers various novel characteristics, such as size in nanometric scale, enhanced adherence to multiple targeting moieties, active and passive targeting, controlled release, and site-specific targeting. Among various nanotherapeutic approaches like dendrimers, lipid-structured nanocarriers, carbon nanotubes, etc., nanoparticle targeted therapeutics can be termed the best among all for their specific cytotoxicity to cancer cells and increased bioavailability to a target site. This review focuses on the types and molecular pathways involving TNBC, existing treatment strategies, various nanotechnological approaches like exosomes, carbon nanotubes, dendrimers, lipid, and carbon-based nanocarriers, and especially various nanoparticles (NPs) like polymeric, photodynamic, peptide conjugated, antibody-conjugated, metallic, inorganic, natural product capped, and CRISPR based nanoparticles already approved for treatment or are under clinical and pre-clinical trials for TNBC.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Mohali, S.A.S Nagar, Punjab 160062, India
| | - Ishfaq Ahmad Bhat
- Northern Railway Hospital, Sri Mata Vaishno Devi, Katra, Reasi 182320, India
| | - Aasiya Bashir
- Department of Pharmaceutical Sciences, Faculty of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, J&K, India
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
6
|
Ahmed KA, Hasib TA, Paul SK, Saddam M, Mimi A, Saikat ASM, Faruque HA, Rahman MA, Uddin MJ, Kim B. Potential Role of CCN Proteins in Breast Cancer: Therapeutic Advances and Perspectives. Curr Oncol 2021; 28:4972-4985. [PMID: 34940056 PMCID: PMC8700172 DOI: 10.3390/curroncol28060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
CCNs are a specific type of matricellular protein, which are essential signaling molecules, and play multiple roles in multicellular eukaryotes. This family of proteins consists of six separate members, which exist only in vertebrates. The architecture of CCN proteins is multi-modular comprising four distinct modules. CCN Proteins achieve their primary functional activities by binding with several integrin7 receptors. The CCN family has been linked to cell adhesion, chemotaxis and migration, mitogenesis, cell survival, angiogenesis, differentiation, tumorigenesis, chondrogenesis, and wound healing, among other biological interactions. Breast cancer is the most commonly diagnosed cancer worldwide and CCN regulated breast cancer stands at the top. A favorable or unfavorable association between various CCNs has been reported in patients with breast carcinomas. The pro-tumorigenic CCN1, CCN2, CCN3, and CCN4 may lead to human breast cancer, although the anti-tumorigenic actions of CCN5 and CCN6 are also present. Several studies have been conducted on CCN proteins and cancer in recent years. CCN1 and CCN3 have been shown to exhibit a dual nature of tumor inhibition and tumor suppression to some extent in quiet recent time. Pharmacological advances in treating breast cancer by targeting CCN proteins are also reported. In our study, we intend to provide an overview of these research works while keeping breast cancer in focus. This information may facilitate early diagnosis, early prognosis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Kazi Ahsan Ahmed
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Tasnin Al Hasib
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Shamrat Kumar Paul
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Md. Saddam
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
- Bio-Science Research Initiative, Gopalganj 8100, Bangladesh
| | - Afsana Mimi
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.); (A.M.); (A.S.M.S.)
| | - Hasan Al Faruque
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Companion Diagnostics and Medical Technology Research Group, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Md. Ataur Rahman
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (K.A.A.); (T.A.H.); (S.K.P.); (H.A.F.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Women’s University, Seoul 03760, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (M.A.R.); (M.J.U.); (B.K.)
| |
Collapse
|
7
|
Kasielska-Trojan A, Szulia A, Zawadzki T, Antoszewski B. The Assessment of Nipple Areola Complex Sensation with Semmes-Weinstein Monofilaments-Normative Values and Its Covariates. Diagnostics (Basel) 2021; 11:diagnostics11112145. [PMID: 34829492 PMCID: PMC8626031 DOI: 10.3390/diagnostics11112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: To establish normative data for nipple-areola complex (NAC) sensibility examined with Semmes-Weinstein monofilament test (SWMT) and two-point discrimination (TPD) in women with varying breast sizes, including women with gigantomastia. We also aimed to identify clinical variables influencing NAC sensation. Methods: A total of 320 breasts in 160 Caucasian women (mean age 33.6 years, SD 11 years) were examined (including 50 hypertrophic breasts). NACs sensation was examined using Semmes-Weinstein monofilaments (SWM) and the Weber Two-Point Discrimination Test. Results: The nipple appeared to be the most sensitive part of NAC. In normal-sized breasts, sensation thresholds (SWM) correlated with: age, BMI, history of births, breast size and ptosis (for all locations), breastfeeding history (for nipple and upper areola) and areola diameter (for all locations apart from the nipple). Regression analysis showed that age, cup size and suprasternal notch-to-nipple distance are risk factors for diminished NAC sensation. Sensation thresholds in all NAC locations of hypertrophic breasts were significantly higher compared to normal-sized breasts, while TPD tests did not differ between the groups. Conclusions: We provided normative values of NAC sensation (tactile threshold and TPD) for different NAC areas. Our investigation indicated that SWM are useful diagnostic tools when the following factors are considered while examining NAC sensation: location (nipple vs. areola), age, breast size, suprasternal notch-to-nipple distance, history of births and breastfeeding. Hypertrophic breasts presented significantly higher sensation thresholds for all NAC locations. The report may serve as a reference data for further investigations regarding NAC sensation after different breast surgeries.
Collapse
Affiliation(s)
- Anna Kasielska-Trojan
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Medical University of Łódź, 90-153 Łódź, Poland; (T.Z.); (B.A.)
- Correspondence: ; Tel.: +48-426-776-742
| | - Agata Szulia
- The Military Medical Faculty, Medical University of Łódź, 90-419 Łódź, Poland;
| | - Tomasz Zawadzki
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Medical University of Łódź, 90-153 Łódź, Poland; (T.Z.); (B.A.)
| | - Bogusław Antoszewski
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Medical University of Łódź, 90-153 Łódź, Poland; (T.Z.); (B.A.)
| |
Collapse
|
8
|
Kumar N, Gulati HK, Sharma A, Heer S, Jassal AK, Arora L, Kaur S, Singh A, Bhagat K, Kaur A, Singh H, Singh JV, Bedi PMS. Most recent strategies targeting estrogen receptor alpha for the treatment of breast cancer. Mol Divers 2020; 25:603-624. [PMID: 32886304 DOI: 10.1007/s11030-020-10133-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022]
Abstract
Breast cancer is the most prominent, frequently diagnosed and leading cause of death among women. Estrogen is an agonist of estrogen receptor alpha (ER-α), expressed in mammary glands and is responsible for initiating many signalling pathways that lead to differentiation and development of breast tissue. Any mutations in these signalling pathways result in irregular growth of mammary tissue, leading to the development of tumour or cancer. All these observations attract the attention of researchers to antagonize ER-α receptor either by developing selective estrogen receptor modulators or by selective estrogen receptor degraders. Therefore, this article provides a brief overview of various factors that are responsible for provoking breast cancer in women and design strategies recently used by the various research groups across the world for antagonizing or demodulating ER-α.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.,Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Aakriti Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shilpa Heer
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anupmjot Kaur Jassal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Lovenish Arora
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Simranpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arshmeet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India. .,Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
9
|
Paulraj S, Ashok Kumar P, Sekhon N, Gambhir HSS. Air in the Breast: A Rare Cause of Iatrogenic Pneumomastia. Cureus 2020; 12:e8447. [PMID: 32642360 PMCID: PMC7336588 DOI: 10.7759/cureus.8447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Air in the breast tissue (pneumomastia) is a rare finding, more so without any history of procedures on the breast. We report the case of an 80-year-old lady who was found to have foci of gas in her right breast on a CT scan. On exclusion of other possible causes for the same, it was concluded that the air in the breast tissue was secondary to a peripheral intravenous line placement. To our knowledge, this is the first reported case of pneumomastia as a complication of peripheral intravenous line placement.
Collapse
Affiliation(s)
- Shweta Paulraj
- Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, USA
| | - Prashanth Ashok Kumar
- Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, USA
| | - Navharsh Sekhon
- Internal Medicine, Adesh Institute of Medical Sciences and Research, Punjab, IND
| | - Harvir Singh S Gambhir
- Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, USA
| |
Collapse
|
10
|
Iacopetta D, Rosano C, Sirignano M, Mariconda A, Ceramella J, Ponassi M, Saturnino C, Sinicropi MS, Longo P. Is the Way to Fight Cancer Paved with Gold? Metal-Based Carbene Complexes with Multiple and Fascinating Biological Features. Pharmaceuticals (Basel) 2020; 13:ph13050091. [PMID: 32403274 PMCID: PMC7281280 DOI: 10.3390/ph13050091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we report the synthesis and the multiple anti-tumor properties of new gold and silver carbene complexes. The chemical modifications, grounded on our previous studies, led us to identify a good lead complex, gold-based, whose biological features are very exciting and promising in the anti-cancer research and could be further developed. Indeed, the bis-[4,5-dichloro-(N-methyl-N’(2-hydroxy-2-phenyl)ethyl-imidazole-2-ylidene)gold(I)]+[dichloro-gold]− (AuL7) complex possesses the ability to interfere with at least three important and different intracellular targets, namely the human topoisomerases I and II and tubulin, which are able to modulate metabolic processes not directly correlated each other. We proved that the modifications of the ligands structure in AuL7, with respect to another already published complex, i.e., bis-[4,5-dichloro-(N-methyl-N’(cyclopentane-2ol)-imidazole-2-ylidine)gold(I)]+[dichloro-gold]− (AuL4), produce a different behavior toward tubulin-polymerization process, since AuL7 is a tubulin-polymerization inhibitor and AuL4 a stabilizer, with the final same result of hampering the tumor growth. Taken together, our outcomes designate AuL7 as a promising compound for the development of multi-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Marco Sirignano
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
- Correspondence: (A.M.); (J.C.); Tel.: +39-0971-202194 (A.M.); +39-0984-493200 (J.C.)
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino–IST, Largo R. Benzi 10, 16132 Genova, Italy; (C.R.); (M.P.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy; (D.I.); (M.S.S.)
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.S.); (P.L.)
| |
Collapse
|
11
|
Thermal physiology of the lactating nipple influences the removal of human milk. Sci Rep 2019; 9:11854. [PMID: 31413333 PMCID: PMC6694124 DOI: 10.1038/s41598-019-48358-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
The nipple has a critical role in successful breastfeeding. Nipple trauma or pain may negatively impact breastfeeding duration which has significant public health implications. The aim of this study was to examine changes in nipple temperature during breastfeeding and pumping within participants. Thirty lactating women participated in two pumping (electric breast pump) and one breastfeeding session. Nipple temperature of both breasts was monitored for two minutes before and after each session with the non-pumped/non-suckled nipple temperature recorded throughout each session. The mean increase in nipple temperature after milk removal by the infant was 1.0 ± 1.6 °C (range −3.2–3.2) and after expression was 1.8 ± 1.4 °C (range −0.9–6.1). Nipple temperature pre expression was significantly lower than post expression (Pre 32.6 ± 1.6, Post 34.3 ± 1.3, p < 0.001) with no difference between the two pumping sessions. For every 1 °C rise in temperature an additional 10 mL of milk was removed on average. The breastfed nipple temperature was significantly lower pre feed than post feed (Pre 32.4 ± 1.6, Post 33.2 ± 1.2 p = 0.01) with a significant but smaller change in nipple temperaturecompared to pumping (Breastfeed 1.0 ± 1.6, Pumping 1.7 ± 1.4, p = 0.03). Nipple temperature increases during pumping and breastfeeding suggesting the breasts have a similar physiological response to different stimuli. Further, the increased temperature potentially plays a role in effective milk removal.
Collapse
|
12
|
García-de-la-Fuente MR, Santacana M, Valls J, Vilardell F, Fernández Armenteros JM, Pujol R, Gari E, Casanova JM. Cytokeratin Profile of Basal Cell Carcinomas According to the Degree of Sun Exposure and to the Anatomical Localization. Am J Dermatopathol 2018; 40:342-348. [PMID: 29135512 PMCID: PMC5943068 DOI: 10.1097/dad.0000000000001042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Basal cell carcinoma (BCC) seems to originate from ultraviolet light-induced mutations involving the bulge or the outer sheath of the hair follicle cells. However, the etiopathogenic mechanisms involved in the development of these tumors in nonphotoexposed and in hairless areas remain unclear. The cytokeratin (CK) profile (including CK5/6, CK7, CK14, CK15, CK17, and CK19) from a series of different BCC subtypes developing in sun-exposed and non-sun-exposed areas, including hairless regions, was evaluated. The authors have observed that CK7 expression in BCC is associated with the anatomical localization of the tumor and its sun-exposition, but not with other factors such as histological subtype. The expression of this CK is higher in BCCs located in non-sun-exposed and nonhairy areas, such as the vulvar semimucosa and the nipple. Because CK7 is a marker of simple glandular epithelia, the authors suggest a glandular origin for BCCs located in hairless and nonphotoexposed areas.
Collapse
Affiliation(s)
- Mª Reyes García-de-la-Fuente
- Department of Dermatology, University Hospital Arnau de Vilanova, Lleida, Spain
- Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Maria Santacana
- Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- Department of Pathology, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Joan Valls
- Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
| | - Felip Vilardell
- Department of Pathology, University Hospital Arnau de Vilanova, Lleida, Spain
| | | | - Ramon Pujol
- Department of Dermatology, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; and
| | - Eloi Gari
- Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- Department of Medicine, University of Lleida, Lleida, Spain
| | - Josep Manel Casanova
- Department of Dermatology, University Hospital Arnau de Vilanova, Lleida, Spain
- Biomedical Research Institute of Lleida (IRBLleida), Lleida, Spain
- Department of Medicine, University of Lleida, Lleida, Spain
| |
Collapse
|