1
|
Appelt J, Baranowsky A, Jahn D, Yorgan T, Köhli P, Otto E, Farahani SK, Graef F, Fuchs M, Herrera A, Amling M, Schinke T, Frosch KH, Duda GN, Tsitsilonis S, Keller J. The neuropeptide calcitonin gene-related peptide alpha is essential for bone healing. EBioMedicine 2020; 59:102970. [PMID: 32853990 PMCID: PMC7452713 DOI: 10.1016/j.ebiom.2020.102970] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Impaired fracture healing represents an ongoing clinical challenge, as treatment options remain limited. Calcitonin gene-related peptide (CGRP), a neuropeptide targeted by emerging anti-migraine drugs, is also expressed in sensory nerve fibres innervating bone tissue. Method Bone healing following a femoral osteotomy stabilized with an external fixator was analysed over 21 days in αCGRP-deficient and WT mice. Bone regeneration was evaluated by serum analysis, µCT analysis, histomorphometry and genome-wide expression analysis. Bone-marrow-derived osteoblasts and osteoclasts, as well as the CGRP antagonist olcegepant were employed for mechanistic studies. Findings WT mice with a femoral fracture display increased CGRP serum levels. αCGRP mRNA expression after skeletal injury is exclusively induced in callus tissue, but not in other organs. On protein level, CGRP and its receptor, calcitonin receptor-like receptor (CRLR) complexing with RAMP1, are differentially expressed in the callus during bone regeneration. On the other hand, αCGRP-deficient mice display profoundly impaired bone regeneration characterised by a striking reduction in the number of bone-forming osteoblasts and a high rate of incomplete callus bridging and non-union. As assessed by genome-wide expression analysis, CGRP induces the expression of specific genes linked to ossification, bone remodeling and adipogenesis. This suggests that CGRP receptor-dependent PPARγ signaling plays a central role in fracture healing. Interpretation This study demonstrates an essential role of αCGRP in orchestrating callus formation and identifies CGRP receptor agonism as a potential approach to stimulate bone regeneration. Moreover, as novel agents blocking CGRP or its receptor CRLR are currently introduced clinically for the treatment of migraine disorders, their potential negative impact on bone regeneration warrants clinical investigation. Funding This work was funded by grants from the Else-Kröner-Fresenius-Stiftung (EKFS), the Deutsche Forschungsgemeinschaft (DFG), and the Berlin Institute of Health (BIH).
Collapse
Affiliation(s)
- Jessika Appelt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Frank Graef
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Aarón Herrera
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
2
|
Saiworn W, Thim-Uam A, Visitchanakun P, Atjanasuppat K, Chantaraaumporn J, Mokdara J, Chungchatupornchai S, Pisitkun P, Leelahavanichkul A, Poolthong S, Baron R, Lotinun S. Cortical Bone Loss in a Spontaneous Murine Model of Systemic Lupus Erythematosus. Calcif Tissue Int 2018; 103:686-697. [PMID: 30116830 DOI: 10.1007/s00223-018-0464-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/08/2018] [Indexed: 01/10/2023]
Abstract
Patients with systemic lupus erythematosus (SLE), a chronic inflammatory disease characterized by loss of T- and B-cell tolerance to autoantigens, are at increased risk for osteoporosis and fractures. Mice deficient in Fc gamma receptor IIb (FcγRIIB) exhibit spontaneous SLE and its restoration rescues the disease. To determine whether deleting FcγRIIB affects cortical bone mass and mechanical properties, we analyzed cortical bone phenotype of FcγRIIB knockouts at different ages. FACS analysis revealed that 6-month-old FcγRIIB-/- mice had increased B220lowCD138+ cells, markers of plasma cells, indicating active SLE disease. In contrast, 3-month-old FcγRIIB-/- mice did not develop the active SLE disease. µCT analysis indicated that FcγRIIB deletion did not affect cortical bone in 3-month-old mutants. However, 6- and 10-month-old FcγRIIB-/- males and females had osteopenic cortical bone and the severity of bone loss increased with disease duration. FcγRIIB deletion decreased cross-sectional area, cortical area, and marrow area in 6-month-old males. Cortical area and cortical thickness were decreased in 10-month-old FcγRIIB-/- males. Lack of FcγRIIB decreased cortical thickness without affecting cortical area in females. However, deletion of a single FcγRIIB allele was insufficient to induce cortical bone loss. The bending strength was decreased in 6- and 10-month-old FcγRIIB-deficient males compared to WT controls. A microindentation analysis demonstrated significantly decreased hardness in both 10-month-old FcγRIIB-/- males and females. Our data indicate that FcγRIIB contributes to the regulation of cortical bone homeostasis subsequent to SLE development and that deletion of FcγRIIB in mice leads to SLE-like disease associated with cortical bone loss and decreased bending strength and hardness.
Collapse
Affiliation(s)
- Worasit Saiworn
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Korakot Atjanasuppat
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jiratha Chantaraaumporn
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jutarat Mokdara
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirintra Chungchatupornchai
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suchit Poolthong
- Department of Prosthodontics and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Harvard Medical School, Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Sutada Lotinun
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
A Cross-Sectional Study of the Association between Autoantibodies and Qualitative Ultrasound Index of Bone in an Elderly Sample without Clinical Autoimmune Disease. J Immunol Res 2018; 2018:9407971. [PMID: 29854851 PMCID: PMC5952466 DOI: 10.1155/2018/9407971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/05/2018] [Accepted: 03/17/2018] [Indexed: 12/15/2022] Open
Abstract
Bone loss is characteristic of the ageing process and a common complication of many autoimmune diseases. Research has highlighted a potential role of autoantibodies in pathologic bone loss. The confounding effects of immunomodulatory drugs make it difficult to establish the contribution of autoantibodies amongst autoimmune disease sufferers. We attempted to examine the relationship between autoantibodies and bone mass in a population of 2812 elderly participants without clinical autoimmune disease. Serum samples were assayed for a panel of autoantibodies (anti-nuclear, extractable nuclear antigen, anti-neutrophil cytoplasmic, thyroid peroxidase, tissue transglutaminase, anti-cardiolipin, rheumatoid factor, and cyclic citrullinated peptide). Bone mass was measured using quantitative ultrasound (QUS) of the calcaneus. The relationship between each autoantibody and bone mass was determined using linear regression models. Anti-nuclear autoantibodies were the most prevalent, positive in approximately 11%, and borderline in roughly 23% of our sample. They were also the only autoantibody observed to be significantly associated with QUS index in the univariate analysis (n = 1628; r = -0.20; 95% CI: -0.40-0.00; p = 0.046). However, statistical significance was lost after adjustment for various other potential confounders. None of the other autoantibodies was associated with QUS index in either univariate or multivariate analysis. We are limited by the cross-sectional nature of the study and the low prevalence of autoantibodies in our nonclinical sample.
Collapse
|
4
|
Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep 2017; 7:121-131. [PMID: 29124082 PMCID: PMC5671387 DOI: 10.1016/j.bonr.2017.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/01/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022] Open
Abstract
The last two decades have marked a growing understanding of the interaction occurring between bone and immune cells. The chronic inflammation and immune system dysfunction commonly observed to occur during the ageing process and as part of a range of other pathological conditions, commonly associated with osteoporosis has led to the recognition of these processes as important determinants of bone disease. This is further supported by the recognition that the immune and bone systems in fact share regulatory mechanisms and progenitor molecules. Research into this complex synergy has provided a better understanding of the immunopathogenesis underlying bone diseases such as osteoporosis. However, existing research has largely focussed on delineating the role played by inflammation in pathogenic bone destruction, despite increasing evidence implicating autoantibodies as important drivers of osteoporosis. This review shall attempt to provide a comprehensive overview of existing research examining the role played by autoantibodies in osteoporosis in order to determine the potential for further research in this area. Autoantibodies represent promising targets for the improved treatment and diagnosis of inflammatory bone loss.
Collapse
Affiliation(s)
- Rosebella A. Iseme
- Department of Population and Reproductive Health, School of Public Health, Kenyatta University, P.O. Box 43844 –, 00100, Nairobi, Kenya
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark Mcevoy
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Brian Kelly
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Brain and Mental Health Research, The University of Newcastle, Callaghan, NSW, Australia
| | - Linda Agnew
- Brain Behaviour Research Group, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Frederick R. Walker
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Laboratory of Affective Neuroscience, The University of Newcastle, Callaghan, NSW, Australia
- University of Newcastle, Medical Sciences MS413, University Drive, Callaghan, NSW 2308, Australia
| | - John Attia
- School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
- Department of General Medicine, John Hunter Hospital, New Lambton Heights, NSW, Australia
| |
Collapse
|