1
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
2
|
Meier-Menches SM, Neuditschko B, Janker L, Gerner MC, Schmetterer KG, Reichle A, Gerner C. A Proteomic Platform Enables to Test for AML Normalization In Vitro. Front Chem 2022; 10:826346. [PMID: 35178376 PMCID: PMC8844467 DOI: 10.3389/fchem.2022.826346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) can be cured by the co-administration of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA). These small molecules relieve the differentiation blockade of the transformed promyelocytes and trigger their maturation into functional neutrophils, which are physiologically primed for apoptosis. This normalization therapy represents a compelling alternative to cytotoxic anticancer chemotherapy, but lacks an in vitro model system for testing the efficiency of novel combination treatments consisting of inducers of differentiation and metallopharmaceuticals. Here, using proteome profiling we present an experimental framework that enables characterising the differentiation- and metal-specific effects of the combination treatment in a panel of acute myeloid leukaemia (AML) cell lines (HL-60 and U937), including APL (NB4). Differentiation had a substantial impact on the proteome on the order of 10% of the identified proteins and featured classical markers and transcription factors of myeloid differentiation. Additionally, ATO provoked specific cytoprotective effects in the AML cell lines HL-60 and U937. In HL-60, these effects included an integrated stress response (ISR) in conjunction with redox defence, while proteasomal responses and a metabolic rewiring were observed in U937 cells. In contrast, the APL cell line NB4 did not display such adaptions indicating a lack of plasticity to cope with the metal-induced stress, which may explain the clinical success of this combination treatment. Based on the induction of these cytoprotective effects, we proposed a novel metal-based compound to be used for the combination treatment instead of ATO. The organoruthenium drug candidate plecstatin-1 was previously shown to induce reactive oxygen species and an ISR. Indeed, the plecstatin-1 combination was found to affect similar pathways compared to the ATO combination in HL-60 cells and did not lead to cytoprotective response signatures in NB4. Moreover, the monocytic cell line U937 showed a low plasticity to cope with the plecstatin-1 combination, which suggests that this combination might achieve therapeutic benefit beyond APL. We propose that the cytoprotective plasticity of cancer cells might serve as a general proxy to discover novel combination treatments in vitro.
Collapse
Affiliation(s)
- Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Marlene C. Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Klaus G. Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
USP18 promotes the growth in hemangiomas by regulating PI3K/AKT pathway. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tran TD, Pham DT. Identification of anticancer drug target genes using an outside competitive dynamics model on cancer signaling networks. Sci Rep 2021; 11:14095. [PMID: 34238960 PMCID: PMC8266823 DOI: 10.1038/s41598-021-93336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Each cancer type has its own molecular signaling network. Analyzing the dynamics of molecular signaling networks can provide useful information for identifying drug target genes. In the present study, we consider an on-network dynamics model—the outside competitive dynamics model—wherein an inside leader and an opponent competitor outside the system have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. If any normal agent links to the external competitor, the state of each normal agent will converge to a stable value, indicating support to the leader against the impact of the competitor. We determined the total support of normal agents to each leader in various networks and observed that the total support correlates with hierarchical closeness, which identifies biomarker genes in a cancer signaling network. Of note, by experimenting on 17 cancer signaling networks from the KEGG database, we observed that 82% of the genes among the top 3 agents with the highest total support are anticancer drug target genes. This result outperforms those of four previous prediction methods of common cancer drug targets. Our study indicates that driver agents with high support from the other agents against the impact of the external opponent agent are most likely to be anticancer drug target genes.
Collapse
Affiliation(s)
- Tien-Dzung Tran
- Complex Systems and Bioinformatics Lab, Faculty of Information and Communication Technology, Hanoi University of Industry, Bac Tu Liem District, 298 Cau Dien street, Hanoi, Vietnam. .,Department of Software Engineering, Faculty of Information and Communication Technology, Hanoi University of Industry, Bac Tu Liem District, 298 Cau Dien street, Hanoi, Vietnam.
| | - Duc-Tinh Pham
- Complex Systems and Bioinformatics Lab, Faculty of Information and Communication Technology, Hanoi University of Industry, Bac Tu Liem District, 298 Cau Dien street, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
5
|
All-trans retinoic acid and protein kinase C α/β1 inhibitor combined treatment targets cancer stem cells and impairs breast tumor progression. Sci Rep 2021; 11:6044. [PMID: 33723318 PMCID: PMC7961031 DOI: 10.1038/s41598-021-85344-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/28/2021] [Indexed: 01/08/2023] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. Blocking a single signaling pathway is often an ineffective therapy, especially in the case of aggressive or drug-resistant tumors. Since we have previously described the mechanism involved in the crosstalk between Retinoic Acid system and protein kinase C (PKC) pathway, the rationale of our study was to evaluate the effect of combining all-trans-retinoic acid (ATRA) with a classical PCK inhibitor (Gö6976) in preclinical settings. Employing hormone-independent mammary cancer models, Gö6976 and ATRA combined treatment induced a synergistic reduction in proliferative potential that correlated with an increased apoptosis and RARs modulation towards an anti-oncogenic profile. Combined treatment also impairs growth, self-renewal and clonogenicity potential of cancer stem cells and reduced tumor growth, metastatic spread and cancer stem cells frequency in vivo. An in-silico analysis of “Kaplan–Meier plotter” database indicated that low PKCα together with high RARα mRNA expression is a favorable prognosis factor for hormone-independent breast cancer patients. Here we demonstrate that a classical PKC inhibitor potentiates ATRA antitumor effects also targeting cancer stem cells growth, self-renewal and frequency.
Collapse
|
6
|
Nguyen CH, Grandits AM, Vassiliou GS, Staber PB, Heller G, Wieser R. Evi1 Counteracts Anti-Leukemic and Stem Cell Inhibitory Effects of All-Trans Retinoic Acid on Flt3-ITD/ Npm1c-Driven Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E385. [PMID: 32998330 PMCID: PMC7600968 DOI: 10.3390/biomedicines8100385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
All-trans retinoic acid (atRA) has a dramatic impact on the survival of patients with acute promyelocytic leukemia, but its therapeutic value in other types of acute myeloid leukemia (AML) has so far remained unclear. Given that AML is a stem cell-driven disease, recent studies have addressed the effects of atRA on leukemic stem cells (LSCs). atRA promoted stemness of MLL-AF9-driven AML in an Evi1-dependent manner but had the opposite effect in Flt3-ITD/Nup98-Hoxd13-driven AML. Overexpression of the stem cell-associated transcription factor EVI1 predicts a poor prognosis in AML, and is observed in different genetic subtypes, including cytogenetically normal AML. Here, we therefore investigated the effects of Evi1 in a mouse model for cytogenetically normal AML, which rests on the combined activity of Flt3-ITD and Npm1c mutations. Experimental expression of Evi1 on this background strongly promoted disease aggressiveness. atRA inhibited leukemia cell viability and stem cell-related properties, and these effects were counteracted by overexpression of Evi1. These data further underscore the complexity of the responsiveness of AML LSCs to atRA and point out the need for additional investigations which may lay a foundation for a precision medicine-based use of retinoids in AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Alexander M. Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - George S. Vassiliou
- Wellcome Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Philipp B. Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| |
Collapse
|
7
|
Nguyen CH, Grandits AM, Purton LE, Sill H, Wieser R. All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle 2020; 19:2573-2588. [PMID: 32900260 PMCID: PMC7644151 DOI: 10.1080/15384101.2020.1810402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Collapse
Affiliation(s)
- Chi H Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne , Melbourne, Australia
| | - Heinz Sill
- Division of Hematology, Medical University of Graz , Graz, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| |
Collapse
|
8
|
Nuclear Receptors as Potential Therapeutic Targets for Myeloid Leukemia. Cells 2020; 9:cells9091921. [PMID: 32824945 PMCID: PMC7563802 DOI: 10.3390/cells9091921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) superfamily has been studied extensively in many solid tumors and some receptors have been targeted to develop therapies. However, their roles in leukemia are less clear and vary considerably among different types of leukemia. Some NRs participate in mediating the differentiation of myeloid cells, making them attractive therapeutic targets for myeloid leukemia. To date, the success of all-trans retinoic acid (ATRA) in treating acute promyelocytic leukemia (APL) remains a classical and unsurpassable example of cancer differentiation therapy. ATRA targets retinoic acid receptor (RAR) and forces differentiation and/or apoptosis of leukemic cells. In addition, ligands/agonists of vitamin D receptor (VDR) and peroxisome proliferator-activated receptor (PPAR) have also been shown to inhibit proliferation, induce differentiation, and promote apoptosis of leukemic cells. Encouragingly, combining different NR agonists or the addition of NR agonists to chemotherapies have shown some synergistic anti-leukemic effects. This review will summarize recent research findings and discuss the therapeutic potential of selected NRs in acute and chronic myeloid leukemia, focusing on RAR, VDR, PPAR, and retinoid X receptor (RXR). We believe that more mechanistic studies in this field will not only shed new lights on the roles of NRs in leukemia, but also further expand the clinical applications of existing therapeutic agents targeting NRs.
Collapse
|
9
|
Nguyen CH, Bauer K, Hackl H, Schlerka A, Koller E, Hladik A, Stoiber D, Zuber J, Staber PB, Hoelbl-Kovacic A, Purton LE, Grebien F, Wieser R. All-trans retinoic acid enhances, and a pan-RAR antagonist counteracts, the stem cell promoting activity of EVI1 in acute myeloid leukemia. Cell Death Dis 2019; 10:944. [PMID: 31822659 PMCID: PMC6904467 DOI: 10.1038/s41419-019-2172-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
Ecotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Katharina Bauer
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Angela Schlerka
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Vienna, Austria
| | - Elisabeth Koller
- Medical Department for Leukemia Research and Hematology, Hanusch Hospital, Vienna, Austria
| | - Anastasiya Hladik
- Research Laboratory of Infection Biology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Philipp B Staber
- Division of Hematology and Hemostaseology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Clinic of Medicine I, Medical University of Vienna, Vienna, Austria. .,Comprehensive Cancer Center, Vienna, Austria.
| |
Collapse
|
10
|
Huang Q, Wang L, Ran Q, Wang J, Wang C, He H, Li L, Qi H. Notopterol-induced apoptosis and differentiation in human acute myeloid leukemia HL-60 cells. Drug Des Devel Ther 2019; 13:1927-1940. [PMID: 31239643 PMCID: PMC6560190 DOI: 10.2147/dddt.s189969] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/04/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose: This study aims to observe the effects of notopterol on the apoptosis and differentiation of HL-60 cells and to explore the underlying molecular mechanisms. Methods: Cell viability was assessed using sulforhodamine B assay. Cell proliferation was determined by the trypan blue dye exclusion test. Colony-forming units were assayed in methylcellulose. Apoptosis assays were carried out by annexin V-fluorescein isothiocyanate(FITC)/propidium iodide (PI) double staining, Hoechst 33342 staining, mitochondrial membrane potential, and Western blot. Wright–Giemsa staining, nitroblue tetrazolium (NBT) reduction assay, CD11b and CD14 and Western blot were detected for induction of differentiation. In addition, cell-cycle phase distribution was analyzed by flow cytometry and Western blot. The combination therapy of notopterol and all-trans retinoic acid (ATRA) on HL-60 cells was examined. Results: Notopterol obviously inhibited the growth of HL-60 cells with an IC50 value of 40.32 μM and remarkably reduced the number of colonies by 10, 20, and 40 µM. In addtion, notopterol induced the percentage of apoptotic HL-60 cells, reduced the mitochondrial membrane potential, decreased the protein expresstion of Bcl-2 and Mcl-1, and increased the expression of Bax, cleavage of caspase 9, caspase 3, and PARP. As for cell differentiation, notopterol clearly induced chromatin condensation; increased the nucleocytoplasmic ratio, nitroblue tetrazolium-positive cells, expression of CD14 and CD11b, and protein expression of c-Jun and Jun B, and decreased c-myc. Furthermore, notopterol induced the G0/G1 cell-cycle arrest as determined using flow cytometry, which may be related to the regulation of cell-cycle-related proteins p53, CDK2, CDK4, Cyclin D1, Cyclin E, and survivin. The combined use of notopterol and ATRA did not enhance the apoptotic effect as evidenced by cell viability test and Hoechst 33342. However, the combination of notopterol and ATRA enhanced the effect of inducing differentiation when compared with using either notopterol or ATRA alone, which can be evidenced by the increased nucleocytoplasmic ratio, NBT positive cells, and expression of CD14. Conclusion: This is the first time it has been demonstrated that notopterol could induce apoptosis, differentiation, and G0/G1 arrest in human AML HL-60 cells, suggesting that notopterol has potential therapeutic effects on AML. The combination application of notopterol (20 and 40 μM) and ATRA (2 μM) could augment differentiation of HL-60 cells.
Collapse
Affiliation(s)
- Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chengqiang Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Hui He
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Li Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| | - Hongyi Qi
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, People's Republic of China
| |
Collapse
|
11
|
Abstract
Conventional treatments for acute leukemia include chemotherapy, radiation therapy, and intensive combined treatments (including bone marrow transplant or stem cell transplants). Novel treatment approaches are in active development. Recently, protein kinase inhibitors are on clinical trials and offer hope as new drugs for acute leukemia treatment. This review will provide a brief summary of the protein kinase inhibitors in clinical applications for acute leukemia treatment.
Collapse
|
12
|
Cañete A, Cano E, Muñoz-Chápuli R, Carmona R. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis. Nutrients 2017; 9:E159. [PMID: 28230720 PMCID: PMC5331590 DOI: 10.3390/nu9020159] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/05/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.
Collapse
Affiliation(s)
- Ana Cañete
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Elena Cano
- Max-Delbruck Center for Molecular Medicine, Robert Roessle-Strasse 10, 13125 Berlin, Germany.
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| | - Rita Carmona
- Department of Animal Biology, Faculty of Science, University of Malaga, Campus de Teatinos s/n Malaga 29071, Spain and Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Severo Ochoa 25, Campanillas 29590, Spain.
| |
Collapse
|