Thomson K, Karouta C, Ashby R. Form-Deprivation and Lens-Induced Myopia Are Similarly Affected by Pharmacological Manipulation of the Dopaminergic System in Chicks.
Invest Ophthalmol Vis Sci 2021;
61:4. [PMID:
33016984 PMCID:
PMC7545069 DOI:
10.1167/iovs.61.12.4]
[Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose
Animal models have demonstrated a link between decreases in retinal dopamine levels and the development of form-deprivation myopia (FDM). However, the consistency of dopamine's role in the other major form of experimental myopia, that of lens-induced myopia (LIM), is less clear, raising the question as to what extent dopamine plays a role in human myopia. Therefore, to better define the role of dopamine in both forms of experimental myopia, we examined how consistent the protection afforded by dopamine and the dopamine agonist 6-amino-5,6,7,8-tetrahydronaphthalene-2,3-diol hydrobromide (ADTN) is between FDM and LIM.
Methods
Intravitreal injections of dopamine (0.002, 0.015, 0.150, 1.500 µmol) or ADTN (0.001, 0.010, 0.100, 1.000 µmol) were administered daily to chicks developing FDM or LIM. Axial length and refraction were measured following 4 days of treatment. To determine the receptor subtype by which dopamine and ADTN inhibit FDM and LIM, both compounds were coadministered with either the dopamine D2-like antagonist spiperone (0.005 µmol) or the D1-like antagonist SCH-23390 (0.005 µmol).
Results
Intravitreal administration of dopamine or ADTN inhibited the development of FDM (ED50 = 0.003 µmol and ED50 = 0.011 µmol, respectively) and LIM (ED50 = 0.002 µmol and ED50 = 0.010 µmol, respectively) in a dose-dependent manner, with a similar degree of protection observed in both paradigms (P = 0.471 and P = 0.969, respectively). Coadministration with spiperone, but not SCH-23390, inhibited the protective effects of dopamine and ADTN against the development of both FDM (P = 0.214 and P = 0.138, respectively) and LIM (P = 0.116 and P = 0.100, respectively).
Conclusions
pharmacological targeting of the retinal dopamine system inhibits FDM and LIM in a similar dose-dependent manner through a D2-like mechanism.
Collapse