1
|
Liu JJ, Zhao GX, He LL, Wang Z, Zibrila AI, Niu BC, Gong HY, Xu JN, Soong L, Li CF, Lu Y. Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway. Toxicol Rep 2021; 8:657-667. [PMID: 33868952 PMCID: PMC8041662 DOI: 10.1016/j.toxrep.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/09/2023] Open
Abstract
Oxidative stress is considered to be one of main pathophysiological mechanisms in myocardial ischemia/reperfusion (I/R) injury. Lycium barbarum polysaccharides (LBP), the main ingredient of Lycium barbarum, have potential antioxidant activity. We aimed to investigate the effects of LBP on myocardial I/R injury and explore the underlying mechanisms. Myocardial I/R group was treated with or without LBP to evaluate oxidative stress markers and the role of Nrf2 signal pathway. Our results showed that I/R increased infarct size and the activities of creatine kinase (CK) and lactate dehydrogenase (LDH) when compared with control group. Meanwhile, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were enhanced and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) were decreased. These changes were associated with a significant increase in myocardial apoptosis, ultimately leading to cardiac dysfunction. LBP reduced infarct size (38.4 ± 2 % versus 19.4 ± 1.8 %, p < 0.05), CK and LDH activities and myocardial apoptotic index. Meanwhile, LBP suppressed the production of ROS and restored redox status. Additionally, LBP increased protein level of nuclear Nrf2 in vivo (2.1 ± 0.3 versus 3.8 ± 0.4, p < 0.05) and in vitro (1.9 ± 0.2 versus 3.8 ± 0.1, p < 0.05) and subsequently upregulated heme oxygenase 1 and NADPH dehydrogenase quinone 1 compared to I/R group. Interestingly, Nrf2 siRNA abolished the protective effects of LBP. LBP suppressed oxidative stress damage and attenuated cardiac dysfunction induced by I/R via activation of the Nrf2 antioxidant signal pathway.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Gong-Xiao Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Lei-Lei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Zheng Wang
- Department of Pharmacology, Xi'an Jiaotong University School of Basic Medical Sciences, China
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Bai-Chun Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Hao-Yu Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, China
| | - Jing-Ning Xu
- Department of Obstetrics & Gynaecology, Northwest Women & Children Hospital, China
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Chun-Fang Li
- Department of Obstetrics & Gynaecology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yi Lu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China.,Department of Pharmacy, College of Stomatology, Xi'an Jiaotong University, China
| |
Collapse
|
2
|
Pan D, Gong X, Wang X, Li M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front Pharmacol 2021; 11:594050. [PMID: 33716724 PMCID: PMC7944143 DOI: 10.3389/fphar.2020.594050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from the endothelial cells of existing arteries, veins, and capillaries. Angiogenesis is involved in a variety of physiological and pathological processes, such as the formation of malignant and development of atherosclerosis and other diseases. In recent years, many studies have shown that the active components of food have a certain regulatory effect on angiogenesis and negligible clinical limitations. With the increasing attention being paid to medicine and food homology, exploring the effect of active food components on angiogenesis is of great significance. In this review, we discuss the source, composition, pharmacological activity, and mechanism of action of certain active components of medicinal foods in detail. These could help prevent angiogenesis-related complications or provide a basis for healthier dietary habits. This review can provide a theoretical basis for the research and development of highly efficient anti-angiogenic drugs with low toxicity.
Collapse
Affiliation(s)
- Dezhi Pan
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
3
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|
4
|
Chen Q, Shi R, Jiang D, Liu W, Jia Z. Lycium barbarum polysaccharide inhibits gastric cancer cell proliferation, migration and invasion by down-regulation of MMPs and suppressing epithelial-mesenchymal transition. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7369-7374. [PMID: 31966578 PMCID: PMC6965242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To evaluate the effect of Lycium barbarum polysaccharide (LBP) on gastric cancer (GC) cells and to explore the associated mechanism. METHODS Human GC SGC-7901 cells were divided into control, 10 μM LBP, 20 μM LBP and 50 μM LBP groups. CCK8 assay and Transwell assay were performed to evaluate the proliferation, migration and invasion of SGC-7901 cells. Western blotting was used to determine protein expressions. RESULTS The proliferation, migration and invasion decreased significantly in 20 μM LBP and 50 μM LBP groups. As the result of Western blotting, protein levels of MMP2, MMP9, Snail and vimentin decreased in 20 μM LBP and 50 μM LBP groups with different degrees. The expression E-cadherin significantly increased in all three experimental groups. The phosphorylation levels of AKT and PI3K in 20 μM LBP and 50 μM LBP groups were much lower than control group. CONCLUSION LBP could inhibit the proliferation, migration and invasion of human GC cells bydown-regulation of MMPs and suppression of epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Qian Chen
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Rongliang Shi
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Daowen Jiang
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Weiyan Liu
- Department of General Surgery, Minhang Hospital, Fudan UniversityChina
| | - Zhenyi Jia
- Department of General Surgery, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong UniversityChina
| |
Collapse
|
5
|
Cao HY, Ding RL, Li M, Yang MN, Yang LL, Wu JB, Yang B, Wang J, Luo CL, Wen QL. Danshensu, a major water-soluble component of Salvia miltiorrhiza, enhances the radioresponse for Lewis Lung Carcinoma xenografts in mice. Oncol Lett 2016; 13:605-612. [PMID: 28356936 PMCID: PMC5351344 DOI: 10.3892/ol.2016.5508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
The molecule 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoic acid (danshensu), a herbal preparation used in traditional Chinese medicine, has been found to possess potential antitumor and anti-angiogenesis effects. The aim of the present study was to investigate the efficacy of the combination of radiation therapy (RT) with danshensu in the treatment of Lewis lung carcinoma (LLC) xenografts, whilst exploring and evaluating the mechanism involved. In total, 8-week old female C57BL/6J mice were randomly assigned into 3 groups to receive: RT, RT + cisplatin and RT + danshensu, respectively, when LLC reached 100–150 mm3. Each group was divided into 7 subgroups according to the different irradiation doses that were administered. Tumor growth curves were created and the sensitization enhancement ratios of the drugs were calculated. The experiment was then repeated, and the 4 groups of tumor-bearing mice were treated with natural saline, danshensu, RT + danshensu and RT, respectively. The mice were sacrificed on day 7, and tumor tissue and blood were collected to determine microvessel density, the expression of proangiogenic factors, and the levels of blood thromboxane B2 and 6-keto-prostaglandin-F1α. Tumor hypoxia was also detected using in vivo fluorescence imaging. With respect to LLC xenografts, treatment with danshensu + RT significantly enhanced the effects of tumor growth inhibition (P<0.05). Furthermore, tumor vasculature was remodeled and microcirculation was improved, which significantly reduced tumor hypoxia (P<0.05). The present study demonstrated that danshensu significantly enhanced the radioresponse of LLC xenografts in mice. The mechanism involved may be associated with the alleviation of tumor cell hypoxia following treatment with danshensu + RT, caused by the improvement of tumor microcirculation and the remodeling of tumor vasculature.
Collapse
Affiliation(s)
- Hong-Ying Cao
- Department of Emergency, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Rui-Lin Ding
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Meng Li
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Mao-Nan Yang
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Ling-Lin Yang
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Jing-Bo Wu
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Bo Yang
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Jing Wang
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Cui-Lian Luo
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Qing-Lian Wen
- Department of Oncology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|