1
|
Liyanage Perera E, Wink DJ, Luo Y, Xia Y, Lee D. Cyclization Reactions of In Situ-Generated Acyl Ketene with Ynones to Form Oxacycles. J Org Chem 2024; 89:4496-4502. [PMID: 38506399 DOI: 10.1021/acs.joc.3c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Acyl ketenes react with polar unsaturated functional groups to give unique heterocyclic rings, yet reactions with unpolarized unsaturated functional groups have not been reported. Herein, we describe two effective ring-forming reactions between acetyl ketene and electron-deficient alkynes. The first reaction involves in situ tethering between acetyl ketene and nucleophile-containing 1,3-diynones, which promotes sequential intramolecular 1,6/1,4-additions to generate 2-methylene-2H-pyrans in various yields (24-91%). The other involves a zwitterionic intermediate generated from acetyl ketene and DABCO, which undergoes a Michael addition with terminal alkynyl ketones to generate 3-acyl-4-pyrones (11-79%).
Collapse
Affiliation(s)
- Erandi Liyanage Perera
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, 325035 Wenzhou, Zhejiang, P. R. China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, 325035 Wenzhou, Zhejiang, P. R. China
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Cerracchio C, Salvatore MM, Del Sorbo L, Serra F, Amoroso MG, DellaGreca M, Nicoletti R, Andolfi A, Fiorito F. In Vitro Evaluation of Antiviral Activities of Funicone-like Compounds Vermistatin and Penisimplicissin against Canine Coronavirus Infection. Antibiotics (Basel) 2023; 12:1319. [PMID: 37627739 PMCID: PMC10451237 DOI: 10.3390/antibiotics12081319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Recent studies have demonstrated that 3-O-methylfunicone (OMF), a fungal secondary metabolite from Talaromyces pinophilus belonging to the class of funicone-like compounds, has antiviral activity against canine coronaviruses (CCoV), which causes enteritis in dogs. Herein, we selected two additional funicone-like compounds named vermistatin (VER) and penisimplicissin (PS) and investigated their inhibitory activity towards CCoV infection. Thus, both compounds have been tested for their cytotoxicity and for antiviral activity against CCoV in A72 cells, a fibrosarcoma cell line suitable for investigating CCoV. Our findings showed an increase in cell viability, with an improvement of morphological features in CCoV-infected cells at the non-toxic doses of 1 μM for VER and 0.5 μM for PS. In addition, we observed that these compounds caused a strong inhibition in the expression of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor which is activated during CCoV infection. Our results also showed the alkalinization of lysosomes in the presence of VER or PS, which may be involved in the observed antiviral activities.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy;
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy;
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
3
|
Salvatore MM, DellaGreca M, Andolfi A, Nicoletti R. New Insights into Chemical and Biological Properties of Funicone-like Compounds. Toxins (Basel) 2022; 14:466. [PMID: 35878204 PMCID: PMC9320429 DOI: 10.3390/toxins14070466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Funicone-like compounds are a homogeneous group of polyketides that, so far, have only been reported as fungal secondary metabolites. In particular, species in the genus Talaromyces seem to be the most typical producers of this group of secondary metabolites. The molecular structure of funicone, the archetype of these products, is characterized by a γ-pyrone ring linked through a ketone group to a α-resorcylic acid nucleus. This review provides an update on the current knowledge on the chemistry of funicone-like compounds, with special emphasis on their classification, occurrence, and diverse biological activities. In addition, their potential relevance as mycotoxins is discussed.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.DG.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit, and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
4
|
Hong X, Guan X, Lai Q, Yu D, Chen Z, Fu X, Zhang B, Chen C, Shao Z, Xia J, Qin JJ, Wang W. Characterization of a bioactive meroterpenoid isolated from the marine-derived fungus Talaromyces sp. Appl Microbiol Biotechnol 2022; 106:2927-2935. [PMID: 35416486 DOI: 10.1007/s00253-022-11914-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
A new meroterpenoid, taladrimanin A (1), was isolated from a marine-derived fungus Talaromyces sp. HM6-1-1, together with eleven biogenetically related compounds (2-12). A plausible biosynthetic pathway for the meroterpenoids (1-4) was proposed. The planar structure of 1 was assigned by HRESIMS and NMR. Its relative configuration was established by quantum chemical NMR calculation of two possible isomers and analyzed by DP4 + method. Finally, X-ray diffraction unambiguously confirmed the relative configuration and revealed the absolute configuration of compound 1. 2-12 were assigned by comparing their NMR data with those reported in the literature. 1 was the first drimane-type meroterpenoid with a C10 polyketide unit bearing an 8R-configuration. In the bioactive assay, 1 exhibited antitumor activity against gastric cancer cells MGC803 and MKN28; it also inhibited the colony formation and induced apoptosis in MGC803 cells both in a concentration-dependent manner. Additionally, 1 displayed selective antibacterial activity against Staphylococcus aureus 6538P, and low activities towards strains of Vibrio parahaemolyticus and Escherichia coli in this study. KEY POINTS: • Twelve compounds were obtained from Talaromyces sp., including four meroterpenoids, one of which was new. • The new compound taladrimanin A (1) inhibits the growth of gastric cancer cells MGC803 and MKN28 as well as the pathogenic bacteria Staphylococcus aureus 6538P. • The biosynthetic pathway of the meroterpenoids was proposed.
Collapse
Affiliation(s)
- Xuan Hong
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qiliang Lai
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Dehua Yu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhongwei Chen
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, China
| | - Xiaoteng Fu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Beibei Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Changkun Chen
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, 361023, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China.
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 361005, Xiamen, China.
| |
Collapse
|
5
|
Noar RD, Thomas E, Daub ME. Genetic Characteristics and Metabolic Interactions between Pseudocercospora fijiensis and Banana: Progress toward Controlling Black Sigatoka. PLANTS (BASEL, SWITZERLAND) 2022; 11:948. [PMID: 35406928 PMCID: PMC9002641 DOI: 10.3390/plants11070948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 05/10/2023]
Abstract
The international importance of banana and severity of black Sigatoka disease have led to extensive investigations into the genetic characteristics and metabolic interactions between the Dothideomycete Pseudocercospora fijiensis and its banana host. P. fijiensis was shown to have a greatly expanded genome compared to other Dothideomycetes, due to the proliferation of retrotransposons. Genome analysis suggests the presence of dispensable chromosomes that may aid in fungal adaptation as well as pathogenicity. Genomic research has led to the characterization of genes and metabolic pathways involved in pathogenicity, including: secondary metabolism genes such as PKS10-2, genes for mitogen-activated protein kinases such as Fus3 and Slt2, and genes for cell wall proteins such as glucosyl phosphatidylinositol (GPI) and glycophospholipid surface (Gas) proteins. Studies conducted on resistance mechanisms in banana have documented the role of jasmonic acid and ethylene pathways. With the development of banana transformation protocols, strategies for engineering resistance include transgenes expressing antimicrobial peptides or hydrolytic enzymes as well as host-induced gene silencing (HIGS) targeting pathogenicity genes. Pseudocercospora fijiensis has been identified as having high evolutionary potential, given its large genome size, ability to reproduce both sexually and asexually, and long-distance spore dispersal. Thus, multiple control measures are needed for the sustainable control of black Sigatoka disease.
Collapse
Affiliation(s)
- Roslyn D. Noar
- NSF Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Elizabeth Thomas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| | - Margaret E. Daub
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA; (E.T.); (M.E.D.)
| |
Collapse
|
6
|
Luo XW, Gao CH, Han FH, Chen XQ, Lin XP, Zhou XF, Wang JJ, Liu YH. A new naphthopyranone from the sponge-associated fungus Penicillium sp. XWS02F62. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:982-986. [PMID: 31353509 DOI: 10.1002/mrc.4930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Xiao-Wei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiu-Ping Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xue-Feng Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jun-Jian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Hong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037. Fitoterapia 2019; 136:104177. [DOI: 10.1016/j.fitote.2019.104177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
8
|
Luo X, Yang J, Chen F, Lin X, Chen C, Zhou X, Liu S, Liu Y. Structurally Diverse Polyketides From the Mangrove-Derived Fungus Diaporthe sp. SCSIO 41011 With Their Anti-influenza A Virus Activities. Front Chem 2018; 6:282. [PMID: 30050898 PMCID: PMC6052247 DOI: 10.3389/fchem.2018.00282] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza A virus (IAV) is a severe worldwide threat to public health and economic development due to its high morbidity and mortality. Marine-derived fungi have been evidenced as a prolific source for the discovery of pharmacologically-active lead compounds. During the course of our search for novel bioactive substances from marine microorganisms, six new polyketides, including two octaketides (1-2), one chromone derivative (13), two highly substituted phthalides (17-18), and one α-pyrone derivative (21) along with 22 known congeners were isolated from a mangrove-associated fungus Diaporthe sp. SCSIO 41011. Their structures were determined by spectroscopic analysis and by comparison with literature data. And the absolute configurations were established according to the specific rotation or electron circular dichroism method. Antiviral evaluation results revealed that compounds 14, 15, 26, and 5-chloroisorotiorin displayed significant anti-IAV activities against three influenza A virus subtypes, including A/Puerto Rico/8/34 H274Y (H1N1), A/FM-1/1/47 (H1N1), and A/Aichi/2/68 (H3N2), with IC50 values in the range of 2.52-39.97 μM. The preliminary structure-activity relationships (SARs) are also discussed. These findings expand the chemical and bioactive diversity of polyketides derived from the genus Diaporthe, and also provide a basis for further development and utilization of chromone, xanthone, and chloroazaphilone derivatives as source of potential anti-viral chemotherapy agents.
Collapse
Affiliation(s)
- Xiaowei Luo
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Gubiani JR, Wijeratne EMK, Shi T, Araujo AR, Arnold AE, Chapman E, Gunatilaka AAL. An epigenetic modifier induces production of (10'S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg Med Chem 2017; 25:1860-1866. [PMID: 28202316 PMCID: PMC5362119 DOI: 10.1016/j.bmc.2017.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022]
Abstract
Incorporation of the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), to a culture broth of the endophytic fungus Phoma sp. nov. LG0217 isolated from Parkinsonia microphylla changed its metabolite profile and resulted in the production of (10'S)-verruculide B (1), vermistatin (2) and dihydrovermistatin (3). When cultured in the absence of the epigenetic modifier, it produced a new metabolite, (S,Z)-5-(3',4'-dihydroxybutyldiene)-3-propylfuran-2(5H)-one (4) together with nafuredin (5). The structure of 4 was elucidated by spectroscopic analyses and its absolute configuration was determined by application of the modified Mosher's ester method. The absolute structure of (10'S)-verruculide B was determined as 5-[(10'S,2'E,6'E)-10',11'-dihydroxy-3',7',11'-trimethyldodeca-2',6'-dien-1'-yl]-(3R)-6,8-dihydroxy-3-methylisochroman-1-one (1) with the help of CD and NOE data. Compound 1 inhibited the activity of protein tyrosine phosphatases (PTPs) 1B (PTP1B), Src homology 2-containing PTP 1 (SHP1) and T-cell PTP (TCPTP) with IC50 values of 13.7±3.4, 8.8±0.6, and 16.6±3.8μM, respectively. Significance of these activities and observed modest selectivity of 1 for SHP1 over PTP1B and TCPTP is discussed.
Collapse
Affiliation(s)
- Juliana R Gubiani
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States; NuBBE - Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, SP 14800-900, Brazil
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States
| | - Taoda Shi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - Angela R Araujo
- NuBBE - Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de Química Orgânica, Instituto de Química, UNESP, Universidade Estadual Paulista, Araraquara, SP 14800-900, Brazil
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, United States
| | - Eli Chapman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706, United States.
| |
Collapse
|
10
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sun J, Zhu ZX, Song YL, Ren Y, Dong D, Zheng J, Liu T, Zhao YF, Tu PF, Li J. Anti-neuroinflammatory constituents from the fungus Penicillium purpurogenum MHZ 111. Nat Prod Res 2016; 31:562-567. [DOI: 10.1080/14786419.2016.1207075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jing Sun
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhi-Xiang Zhu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yue-Lin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yi Ren
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Dan Dong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Ting Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P.R. China
| | - Yun-Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Peng-Fei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
12
|
Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 2013; 18:11338-76. [PMID: 24064454 PMCID: PMC6269870 DOI: 10.3390/molecules180911338] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022] Open
Abstract
This review covers important anticancer and antifungal compounds reported from filamentous fungi and in particular from Aspergillus, Penicillium and Talaromyces. The taxonomy of these fungi is not trivial, so a focus of this review has been to report the correct identity of the producing organisms based on substantial previous in-house chemotaxonomic studies.
Collapse
Affiliation(s)
- Tanja Thorskov Bladt
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark.
| | | | | | | |
Collapse
|
13
|
Bioprospecting in the Berkeley Pit. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-444-62615-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, Varga J, Frisvad JC. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 2012; 70:159-83. [PMID: 22308048 PMCID: PMC3233910 DOI: 10.3114/sim.2011.70.04] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
UNLABELLED The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified in Talaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticilliumsensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium. For detailed phylogenetic analysis of species relationships, the ITS region (incl. 5.8S nrDNA) was sequenced for the available type strains and/or representative isolates of Talaromyces and related biverticillate anamorphic species. Extrolite profiles were compiled for all type strains and many supplementary cultures. All evidence supports our conclusions that Penicillium subgenus Biverticillium is distinct from other subgenera in Penicillium and should be taxonomically unified with the Talaromyces species that reside in the same clade. Following the concepts of nomenclatural priority and single name nomenclature, we transfer all accepted species of Penicillium subgenus Biverticillium to Talaromyces. A holomorphic generic diagnosis for the expanded concept of Talaromyces, including teleomorph and anamorph characters, is provided. A list of accepted Talaromyces names and newly combined Penicillium names is given. Species of biotechnological and medical importance, such as P. funiculosum and P. marneffei, are now combined in Talaromyces. Excluded species and taxa that need further taxonomic study are discussed. An appendix lists other generic names, usually considered synonyms of Penicillium sensu lato that were considered prior to our adoption of the name Talaromyces. TAXONOMIC NOVELTIES Taxonomic novelties:New species - Talaromyces apiculatus Samson, Yilmaz & Frisvad, sp. nov. New combinationsand names - Talaromyces aculeatus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. albobiverticillius (H.-M. Hsieh, Y.-M. Ju & S.-Y. Hsieh) Samson, Yilmaz, Frisvad & Seifert, T. allahabadensis (B.S. Mehrotra & D. Kumar) Samson, Yilmaz & Frisvad, T. aurantiacus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, & Frisvad, T. boninensis (Yaguchi & Udagawa) Samson, Yilmaz, & Frisvad, T. brunneus (Udagawa) Samson, Yilmaz & Frisvad, T. calidicanius (J.L. Chen) Samson, Yilmaz & Frisvad, T. cecidicola (Seifert, Hoekstra & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. coalescens (Quintan.) Samson, Yilmaz & Frisvad, T. dendriticus (Pitt) Samson, Yilmaz, Frisvad & Seifert, T. diversus (Raper & Fennell) Samson, Yilmaz & Frisvad, T. duclauxii (Delacr.) Samson, Yilmaz, Frisvad & Seifert, T. echinosporus (Nehira) Samson, Yilmaz & Frisvad, comb. nov. T. erythromellis (A.D. Hocking) Samson, Yilmaz, Frisvad & Seifert, T. funiculosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. islandicus (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. loliensis (Pitt) Samson, Yilmaz & Frisvad, T. marneffei (Segretain, Capponi & Sureau) Samson, Yilmaz, Frisvad & Seifert, T. minioluteus (Dierckx) Samson, Yilmaz, Frisvad & Seifert, T. palmae (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. panamensis (Samson, Stolk & Frisvad) Samson, Yilmaz, Frisvad & Seifert, T. paucisporus (Yaguchi, Someya & Udagawa) Samson & Houbraken T. phialosporus (Udagawa) Samson, Yilmaz & Frisvad, T. piceus (Raper & Fennell) Samson, Yilmaz, Frisvad & Seifert, T. pinophilus (Hedgcock) Samson, Yilmaz, Frisvad & Seifert, T. pittii (Quintan.) Samson, Yilmaz, Frisvad & Seifert, T. primulinus (Pitt) Samson, Yilmaz & Frisvad, T. proteolyticus (Kamyschko) Samson, Yilmaz & Frisvad, T. pseudostromaticus (Hodges, G.M. Warner, Rogerson) Samson, Yilmaz, Frisvad & Seifert, T. purpurogenus (Stoll) Samson, Yilmaz, Frisvad & Seifert, T. rademirici (Quintan.) Samson, Yilmaz & Frisvad, T. radicus (A.D. Hocking & Whitelaw) Samson, Yilmaz, Frisvad & Seifert, T. ramulosus (Visagie & K. Jacobs) Samson, Yilmaz, Frisvad & Seifert, T. rubicundus (J.H. Mill., Giddens & A.A. Foster) Samson, Yilmaz, Frisvad & Seifert, T. rugulosus (Thom) Samson, Yilmaz, Frisvad & Seifert, T. sabulosus (Pitt & A.D. Hocking) Samson, Yilmaz & Frisvad, T. siamensis (Manoch & C. Ramírez) Samson, Yilmaz & Frisvad, T. sublevisporus (Yaguchi & Udagawa) Samson, Yilmaz & Frisvad, T. variabilis (Sopp) Samson, Yilmaz, Frisvad & Seifert, T. varians (G. Sm.) Samson, Yilmaz & Frisvad, T. verruculosus (Peyronel) Samson, Yilmaz, Frisvad & Seifert, T. viridulus Samson, Yilmaz & Frisvad.
Collapse
Affiliation(s)
- R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stierle AA, Stierle DB, Girtsman T. Caspase-1 inhibitors from an extremophilic fungus that target specific leukemia cell lines. JOURNAL OF NATURAL PRODUCTS 2012; 75:344-50. [PMID: 22295871 PMCID: PMC3330824 DOI: 10.1021/np200414c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Berkeley Pit Lake, Butte, Montana, is a 540 m deep abandoned open-pit copper mine filled with over 140 billion liters of acidic, metal-sulfate-contaminated water. This harsh environment has yielded several microorganisms that produce interesting biologically active compounds. Several polyketide metabolites including the new berkazaphilones A (1) and B (2) and octadienoic acid derivatives berkedienoic acid (13) and berkedienolactone (15), as well as previously reported azaphilone 4, vermistatin (6), dihydrovermistatin (7), penisimplicissin (8), aldehyde 9, and methylparaconic acid (11), were isolated from a culture broth of Penicillium rubrum taken from a depth of 270 m. The structures of these compounds were deduced by interpretation of spectroscopic data. The compounds were isolated either for their inhibition of the signal transduction enzyme caspase-1 or because of their structural similarity to these inhibitors. Selected compounds were further evaluated for their ability to inhibit interleukin-1β production by inflammasomes in induced THP-1 cells. Berkazaphilones B (2) and C (4) and vermistatin analogue penisimplicissin (8) exhibited selective activity against leukemia cancer cell lines in the National Cancer Institute 60 human cell line assay.
Collapse
Affiliation(s)
- Andrea A. Stierle
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana Missoula, Montana 59812
| | - Donald B. Stierle
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana Missoula, Montana 59812
| | - Teri Girtsman
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana Missoula, Montana 59812
| |
Collapse
|
16
|
Nicoletti R, Manzo E, Ciavatta ML. Occurence and bioactivities of funicone-related compounds. Int J Mol Sci 2009; 10:1430-1444. [PMID: 19468317 PMCID: PMC2680625 DOI: 10.3390/ijms10041430] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/23/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022] Open
Abstract
Studies on production of secondary metabolites by fungi have received a substantial boost lately, particularly with reference to applications of their biological properties in human medicine. Funicones represent a series of related compounds for which there is accumulating evidence supporting their possible use as pharmaceuticals. This paper provides a review on the current status of knowledge on these fungal extrolites, with special reference to aspects concerning their molecular structures and biological activities.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Research and Experimentation in Agriculture, C.A.T. Research Unit / Via Vitiello 108, Scafati 84018, Italy
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +39-081-8563631; Fax: +39-081-8506206
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council / Via Campi Flegrei 34, Pozzuoli 80078, Italy; E-Mails:
(E.M.);
(M.C.)
| | - Maria Letizia Ciavatta
- Institute of Biomolecular Chemistry, National Research Council / Via Campi Flegrei 34, Pozzuoli 80078, Italy; E-Mails:
(E.M.);
(M.C.)
| |
Collapse
|
17
|
Ge HM, Shen Y, Zhu CH, Tan SH, Ding H, Song YC, Tan RX. Penicidones A-C, three cytotoxic alkaloidal metabolites of an endophytic Penicillium sp. PHYTOCHEMISTRY 2008; 69:571-6. [PMID: 17804027 DOI: 10.1016/j.phytochem.2007.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/13/2007] [Accepted: 07/19/2007] [Indexed: 05/17/2023]
Abstract
Along with the known secondary metabolites lumichrome, physcion, and emodin-1,6-dimethyl ether, three alkaloids named penicidones A-C (1-3) were isolated from the culture of Penicillium sp. IFB-E022, an endophytic fungal strain residing in the stem of Quercus variabilis (Fagaceae). The structures of penicidones A-C were established by a correlative interpretation of spectroscopic data including IR, UV and HR-ESI-MS, as well as by analysis of a set of 1D and 2D NMR experiments. The stereochemistry of compounds 1 and 2 was obtained by comparison of the optical rotation with those of vermistatin and its analogues. Penicidones A-C were the first group of natural products possessing a penicidone framework. Compounds 1-3 exhibited moderate cytotoxicity against four cancer cell lines.
Collapse
Affiliation(s)
- Hui Ming Ge
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, School of Medicine, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Xia XK, Huang HR, She ZG, Cai JW, Lan L, Zhang JY, Fu LW, Vrijmoed L, Lin YC. Structural and Biological Properties of Vermistatin and Two New Vermistatin Derivatives Isolated from the Marine-Mangrove Endophytic FungusGuignardia sp. No. 4382. Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
New penicillide derivatives isolated from Penicillium simplicissimum. J Nat Med 2006; 60:185-190. [DOI: 10.1007/s11418-005-0028-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/30/2005] [Indexed: 11/26/2022]
|