1
|
Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science 2022; 377:1323-1328. [DOI: 10.1126/science.abq8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.
Collapse
Affiliation(s)
| | - Bartosz Górski
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Tilby
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Saloua Chelli
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., 45007 Toledo, Spain
| | - Kevin J. Gillen
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Hendrik Zipse
- Department Chemie, LMU München, D-81377 München, Germany
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
2
|
Nucleophilic Aromatic Substitution of Polyfluoroarene to Access Highly Functionalized 10-Phenylphenothiazine Derivatives. Molecules 2021; 26:molecules26051365. [PMID: 33806360 PMCID: PMC7962002 DOI: 10.3390/molecules26051365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/29/2022] Open
Abstract
Nucleophilic aromatic substitution (SNAr) reactions can provide metal-free access to synthesize monosubstituted aromatic compounds. We developed efficient SNAr conditions for p-selective substitution of polyfluoroarenes with phenothiazine in the presence of a mild base to afford the corresponding 10-phenylphenothiazine (PTH) derivatives. The resulting polyfluoroarene-bearing PTH derivatives were subjected to a second SNAr reaction to generate highly functionalized PTH derivatives with potential applicability as photocatalysts for the reduction of carbon–halogen bonds.
Collapse
|