1
|
Pradipta AR, Tanaka K. Application of Acrolein Imines to Organic Synthesis, Biofunctional Studies, and Clinical Practice. CHEM REC 2021; 21:646-662. [PMID: 33769681 DOI: 10.1002/tcr.202000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/10/2021] [Indexed: 11/12/2022]
Abstract
N-alkyl unsaturated imines derived from acrolein, a toxin produced during oxidative stress, and biogenic alkyl amines occur naturally and are considered biologically relevant compounds. However, despite the recent conceptual and technological advances in organic synthesis, research on the new reactivity of these compounds is lacking. This personal account discusses research on the reactivity that has been overlooked in acrolein imines, including the discovery of new methods to synthesize biologically active compounds, the determination of new functions of relevant imines and their precursors, i. e., aldehydes and amines, and the application of these methods for clinical diagnosis.
Collapse
Affiliation(s)
- Ambara R Pradipta
- School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Katsunori Tanaka
- School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.,Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russian Federation
| |
Collapse
|
2
|
Chang TC, Pradipta AR, Tanaka K. Enantioselective synthesis of cyclic and linear diamines by imine cycloadditions. Chirality 2020; 32:1160-1168. [PMID: 32621328 DOI: 10.1002/chir.23265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Imine is one of the most versatile functional groups in chemistry and biochemistry fields. Although many biochemical reactions involve imine formation, the inherently unstable property of N-alkyl-α,β-unsaturated imines still hindered their utilization in organic synthesis. In this article, we described that the N-alkyl-α,β-unsaturated imines, which prepared from alkylamines and acrolein, could smoothly react through [4 + 4] cycloaddition to give eight-membered diazacyclooctane derivatives in excellent yields. Under a similar condition, in the presence of formaldehyde, the [4 + 2] and [4 + 2 + 2] cycloadditions could lead to the formation of six-membered hexahydropyrimidine or eight-membered triazacyclooctanes, depending on the substituent of aldehydes. Moreover, an easy functional group manipulation of the cyclic products obtained from these cycloadditions can provide variously substituted chiral linear diamines. We can utilize these novel reactivities to reveal the unknown and essential properties of many biological processes that involve N-alkyl-unsaturated imines.
Collapse
Affiliation(s)
- Tsung-Che Chang
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan.,School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan.,School of Materials and Chemical Technology, Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia.,GlycoTargeting Research Laboratory, RIKEN baton Zone Program, Saitama, Japan
| |
Collapse
|
3
|
Chulakova DR, Pradipta AR, Lodochnikova OA, Kuznetsov DR, Bulygina KS, Smirnov IS, Usachev KS, Latypova LZ, Kurbangalieva AR, Tanaka K. Facile Access to Optically Active 2,6-Dialkyl-1,5-Diazacyclooctanes. Chem Asian J 2019; 14:4048-4054. [PMID: 31381243 DOI: 10.1002/asia.201900938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/01/2019] [Indexed: 11/11/2022]
Abstract
The chiral substituted 1,5-diazacyclooctane (1,5-DACO) is of considerable importance and has attracted attention from a wide range of fields due to their unique chemical and biological properties. Despite the application potential, further study has not been optimized due to difficulties in their synthetic accessibility. Here, we report that the 1,5-DACO bearing a chiral auxiliary obtained from the formal [4+4] cycloaddition of N-alkyl-α,β-unsaturated imines can be further derivatized by nucleophilic alkylation to give various chiral substituted 1,5-DACO derivatives. The removal of the chiral auxiliary was effectively carried out using hydrogenation over Pearlman's catalyst. This methodology allows the production of a broad range of unprecedented optically active 2,6-dialkyl-1,5-DACO, which could not be accessed by other methods.
Collapse
Affiliation(s)
- Dilyara R Chulakova
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Ambara R Pradipta
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Olga A Lodochnikova
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.,Arbuzov Institute of Organic and Physical, Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan, 420088, Russia
| | - Danil R Kuznetsov
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Kseniya S Bulygina
- Arbuzov Institute of Organic and Physical, Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov Street, Kazan, 420088, Russia
| | - Ivan S Smirnov
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Konstantin S Usachev
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Liliya Z Latypova
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Almira R Kurbangalieva
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Chemistry Laboratory, Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.,Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Kishimoto A, Nomura S, Tanaka K. Chemical Sensing of Acrolein-Amine Conjugates for Food Quality Control: A Case Study of Milk Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Arisa Kishimoto
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shogo Nomura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
| |
Collapse
|
5
|
Al-Matar HM, Dawood KM, Tohamy WM, Shalaby MA. Facile Assembling of Novel 2,3,6,7,9-pentaazabicyclo- [3.3.1]nona-3,7-diene Derivatives under Microwave and Ultrasound Platforms. Molecules 2019; 24:E1110. [PMID: 30897823 PMCID: PMC6471913 DOI: 10.3390/molecules24061110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 01/11/2023] Open
Abstract
Reactions of a series of 3-oxo-2-arylhydrazonopropanal derivatives with two molar ratio of ammonium acetate afforded a library of tetrasubstituted 2,3,6,7,9-pentaazabicyclo[3.3.1]nona- 3,7-diene derivatives in good to excellent isolated yields. The reaction was activated with triethylamine catalyst under three different heating modes: thermal, ultrasonic and microwave irradiating conditions in ethanol solvent. The structures of the isolated products were fully characterized by spectral and analytical data as well as X-ray single crystal of selected examples.
Collapse
Affiliation(s)
- Hamad M Al-Matar
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait.
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Wael M Tohamy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo 12622, Egypt.
| | - Mona A Shalaby
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait.
| |
Collapse
|
6
|
Mori Y, Sakai T, Aoyama K, Oshima R, Furukawa K. Stereoinversion of a Tertiary Alcohol on a THP Ring: a Recovery Route to an Intermediate for Gymnocin-A. HETEROCYCLES 2018. [DOI: 10.3987/com-17-s(t)8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Tanaka K, R. Pradipta A, Latypova L, Chulakova D, Smirnov I, Kurbangalieva A. Cycloaddition Reactions of N-Alkyl-α,β-unsaturated Imines: Facile Preparation of Azaheterocycles for Synthesis and Biological Applications. HETEROCYCLES 2018. [DOI: 10.3987/rev-18-sr(t)4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Takamatsu M, Fukase K, Tanaka K. Bio-inspired Domino Reduction of Nitroarenes by Acrolein–Amine Conjugates in One-pot Operation. CHEM LETT 2017. [DOI: 10.1246/cl.170175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masayuki Takamatsu
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
- Japan Science and Technology Agency-PRESTO, 2-1 Hirosawa, Wako, Saitama 351-0198
| |
Collapse
|
9
|
Pradipta AR, Tanaka K. Unexplored Chemical Reactions of Endogenous Acrolein: Detection, Toxicity, and Biological Roles. YAKUGAKU ZASSHI 2017; 137:301-306. [PMID: 28250324 DOI: 10.1248/yakushi.16-00231-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, occurs as pollutant in the environment (e.g., tobacco smoke and exhaust gas) and is ubiquitously generated in biosystems (e.g., the lipid peroxidation process and metabolism of polyamine or amino acids). High accumulation of acrolein in biosystems is often linked pathologically with several oxidative stress-related diseases, including cancer and Alzheimer's disease. Accordingly, acrolein holds great potential as a key biomarker in oxidative stress-related diseases, and direct measurement of acrolein in biological samples is important to provide information for diagnostic and therapeutic purposes. Recently, we have serendipitously discovered the unrecognized reactivity of phenyl azide to acrolein. Phenyl azide can rapidly and selectively react with acrolein in a "click" manner to provide 4-formyl-1,2,3-triazoline through 1,3-dipolar cycloaddition. We have successfully utilized the acrolein-azide click reaction as a simple but robust method for detecting and visualizing acrolein generated by live cells in the context of oxidative stress processes. In addition, we also serendipitously discovered novel cycloaddition reactions of N-alkyl-α,β-unsaturated imines derived from acrolein and biogenic amines (e.g., polyamines, norepinephrine, and sphingosine), to yield 8-membered cyclic compounds. We then examined the biological functions of the cyclic products and revealed for the first time their roles in the oxidative stress mechanism and inhibition of amyloid β(1-40) fibrillization.
Collapse
|
10
|
Shainyan BA, Astakhova V, Ganin AS, Moskalik MY, Sterkhova IV. Oxidative addition/cycloaddition of arenesulfonamides and triflamide to N-allyltriflamide and N,N-diallyltriflamide. RSC Adv 2017. [DOI: 10.1039/c7ra05831d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mono- and diallyltriflamides react with triflamide in the oxidative system t-BuOCl + NaI to give the products of addition and cycloaddition, unlike the reaction of N-allyltriflamide with arenesulfonamides or trifluoroacetamide leading to chlorination and cyclodimerization.
Collapse
Affiliation(s)
- B. A. Shainyan
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Division of Russian Academy of Sciences
- Irkutsk
- Russia
| | - V. V. Astakhova
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Division of Russian Academy of Sciences
- Irkutsk
- Russia
| | - A. S. Ganin
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Division of Russian Academy of Sciences
- Irkutsk
- Russia
| | - M. Yu Moskalik
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Division of Russian Academy of Sciences
- Irkutsk
- Russia
| | - I. V. Sterkhova
- A. E. Favorsky Irkutsk Institute of Chemistry
- Siberian Division of Russian Academy of Sciences
- Irkutsk
- Russia
| |
Collapse
|
11
|
Takamatsu M, Fukase K, Oka R, Kitazume S, Taniguchi N, Tanaka K. A Reduction-Based Sensor for Acrolein Conjugates with the Inexpensive Nitrobenzene as an Alternative to Monoclonal Antibody. Sci Rep 2016; 6:35872. [PMID: 27782170 PMCID: PMC5080631 DOI: 10.1038/srep35872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Acrolein, a highly toxic α, β-unsaturated aldehyde, has been a longstanding key biomarker associated with a range of disorders related to oxidative stresses. One of the most promising methods for detecting acrolein involves the use of antibodies that can recognize the acrolein-lysine conjugate, 3-formyl-3, 4-dehydropiperidines (FDP), within oxidatively stressed cells and tissues from various disease states. We have uncovered here that FDP could reduce nitroarenes in high yields at 100 °C in the presence of excess CaCl2 as a Lewis acid promoter. This unique transformation allowed for the development of a de novo method for detecting levels of FDPs generated from proteins in urine or blood serum samples. Thus we successfully converted a non-fluorescent and inexpensive 4-nitrophthalonitrile probe to the corresponding fluorescent aniline, thereby constituting the concept of fluorescent switching. Its sensitivity level (0.84 nmol/mL) is more than that of ELISA assays (3.13 nmol/mL) and is already equally reliable and reproducible at this early stage of development. More importantly, this method is cost effective and simple to operate, requiring only mixing of samples with a kit solution. Our method thus possesses potential as a future alternative to the more costly and operatively encumbered conventional antibody-based methods.
Collapse
Affiliation(s)
- Masayuki Takamatsu
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
- Japan Science and Technology Agency-PRESTO, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Satake M, Irie R, Suzuki R, Tachibana K, T. Holland P, Tim Harwood D, Shi F, McNabb P, Beuzenberg V, Hayashi F, Zhang H. Brevisulcatic Acids from a Marine Microalgal Species Implicated in a Toxic Event in New Zealand. HETEROCYCLES 2016. [DOI: 10.3987/com-15-13332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Pradipta AR, Tsutsui A, Tanaka K. Unrecognized Reactivity of N-Alkyl Unsaturated Imines: Synthetic Application and Biological Functions. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Abstract
This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
15
|
Eftekhari-Sis B, Zirak M. Chemistry of α-oxoesters: a powerful tool for the synthesis of heterocycles. Chem Rev 2014; 115:151-264. [PMID: 25423283 DOI: 10.1021/cr5004216] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Suzuki R, Irie R, Harntaweesup Y, Tachibana K, Holland PT, Harwood DT, Shi F, Beuzenberg V, Itoh Y, Pascal S, Edwards PJB, Satake M. Brevisulcatic acids, marine ladder-frame polyethers from the red tide dinoflagellate Karenia brevisulcata in New Zealand. Org Lett 2014; 16:5850-3. [PMID: 25356530 DOI: 10.1021/ol502700h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isolation and structural determination of new marine ladder-frame polyethers, brevisulcatic acids-1 (1) and -4 (2) are reported. Brevisulcatic acids were isolated from the dinoflagellate Karenia brevisulcata, which was identified as the causative species of a major red tide event in New Zealand in 1998. The ether ring composition and a β-hydroxy, γ-methylene valeric acid side chain of 1 and 2 are common, but 2 has a γ-lactone as the 5-membered A-ring while 1 is the seco acid analogue. Compound 2 has structural and bioactivity similarities to brevetoxin A.
Collapse
Affiliation(s)
- Rina Suzuki
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|