Obara K, Inomata T. 18q21.1q21.32 Deletion in a Patient With Juvenile Cerebral Infarction.
Cureus 2023;
15:e42534. [PMID:
37521594 PMCID:
PMC10373431 DOI:
10.7759/cureus.42534]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/01/2023] Open
Abstract
The chromosome 18q deletion syndrome is a well-recognized chromosomal aberration characterized by intellectual disability, facial dysmorphism, short stature, microcephaly, cardiac anomalies, such as atrial and ventricular septal defect, and hypotonia; however, the phenotype is highly variable depending on the combination of genes within the chromosomal aberration regions. Thus far, no association was found between 18q deletion and cerebral infarction. Herein, we report a case of 18q deletion syndrome that caused juvenile cerebral infarction. A 32-year-old woman with an intellectual disability and facial dysmorphism presented with sudden-onset left-sided weakness. Brain magnetic resonance imaging revealed a striatocapsular infarction. Abnormalities in thrombotic profiles and embolic sources could not be identified. Microarray-based comparative genomic hybridization analysis detected a microdeletion in chromosome 18 encompassing the cytoregion 18q21.1q21.32. The deletion region contains the TCF4 and SMAD4 genes, whose haploinsufficiency causes the causative genes of Pitt-Hopkins syndrome (PTHS) and juvenile polyposis/hereditary hemorrhagic telangiectasia (JPHT or JPHHT), respectively. The patient's facial features were characteristic of PTHS, including a broad, beaked nasal bridge and a wide mouth with a bow-shaped upper lip. On the contrary, the patient did not show breathing abnormalities, which is one of the hallmarks of PTHS. We could not elucidate the relationship between cerebral infarction and genes included in the deleted region of 18q. However, if patients with chromosomal aberrations have cerebral infarctions, investigating the genes included within the chromosomal aberration regions may increase our knowledge of the genes involved in juvenile cerebral infarction.
Collapse