Characteristics and Antioxidant Activity of Walnut Oil Using Various Pretreatment and Processing Technologies.
Foods 2022;
11:foods11121698. [PMID:
35741896 PMCID:
PMC9222277 DOI:
10.3390/foods11121698]
[Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
This study was the first time the effects of pretreatment technology (microwave roasting, MR; oven roasting, OR; steaming roasting, SR) and processing technology (screw pressing, SP; aqueous enzymatic extraction, AEE; subcritical butane extraction, SBE) on the quality (physicochemical properties, phytochemical content, and antioxidant ability) of walnut oil were systematically compared. The results showed that the roasting pretreatment would reduce the lipid yield of walnut oil and SBE (59.53−61.19%) was the processing method with the highest yield. SR-AEE oil provided higher acid value (2.49 mg/g) and peroxide value (4.16 mmol/kg), while MR-SP oil had the highest content of polyunsaturated fatty acid (73.69%), total tocopherol (419.85 mg/kg) and total phenolic compounds (TPC, 13.12 mg/kg). The DPPH-polar and ABTS free radicals’ scavenging abilities were accorded with SBE > AEE > SP. SBE is the recommended process for improving the extraction yield and antioxidant ability of walnut oil. Hierarchical cluster analysis showed that processing technology had a greater impact on walnut oil than pretreatment technology. In addition, multiple linear regression revealed C18:0, δ-tocopherol and TPC had positive effects on the antioxidant ability of walnut oil, while C18:1n-9, C18:3n-3 and γ-tocopherol were negatively correlated with antioxidant activity. Thus, this a promising implication for walnut oil production.
Collapse