1
|
Escobar-Correas S, Mendoza-Porras O, Castro-Vazquez A, Vega IA, Colgrave ML. Proteomic analysis of digestive tract peptidases and lipases from the invasive gastropod Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2023; 79:1420-1430. [PMID: 36464640 DOI: 10.1002/ps.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- CSIRO, Agriculture & Food, St. Lucia, Queensland, Australia
| | | | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | |
Collapse
|
2
|
Saveanu L, Martín PR. An Invader's Peculiar Trophic Behavior: Diel Fluctuations and Environmental Drivers. THE BIOLOGICAL BULLETIN 2020; 239:164-173. [PMID: 33347802 DOI: 10.1086/711489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe trophic ecology of the invasive apple snail Pomacea canaliculata was intensely investigated because of the impacts of its grazing on aquatic vegetation, including crops. However, this freshwater snail also gathers food from the water surface by using a pedal funnel, a distinctive trophic behavior called pedal surface collecting. We investigated the diel fluctuations of this trophic behavior through four whole-day field observations in a stream. We recorded the lowest pedal funnel frequencies during light hours and the highest after sunset, a pattern similar to that of general activity. We evaluated through laboratory experiments the influence of water temperature and velocity, photoperiod, and a possible endogenous rhythm on this behavior. Pedal funnels are formed within the whole temperature range in which this snail is active. The highest pedal funnel formation rates were recorded at 30 °C, but the food captured was the same regardless of temperature. Pedal funnels were not observed at water velocities above 0.12 m·s-1, but below this limit the rate and time spent in funnels remained constant with velocity. Despite the time of day, pedal funnels were scarce under constant artificial light, ruling out an endogenous rhythm. Both in the laboratory and in the stream, the highest levels of pedal funnels were observed during dark periods, probably as a strategy to avoid detection by visual predators. Pedal surface collecting on floating matter could represent an additional impact of invasive apple snails on freshwater ecosystems, but it could also be used for the specific delivery of molluscicides against them.
Collapse
|
3
|
Sun J, Mu H, Ip JCH, Li R, Xu T, Accorsi A, Sánchez Alvarado A, Ross E, Lan Y, Sun Y, Castro-Vazquez A, Vega IA, Heras H, Ituarte S, Van Bocxlaer B, Hayes KA, Cowie RH, Zhao Z, Zhang Y, Qian PY, Qiu JW. Signatures of Divergence, Invasiveness, and Terrestrialization Revealed by Four Apple Snail Genomes. Mol Biol Evol 2020; 36:1507-1520. [PMID: 30980073 PMCID: PMC6573481 DOI: 10.1093/molbev/msz084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The family Ampullariidae includes both aquatic and amphibious apple snails. They are an emerging model for evolutionary studies due to the high diversity, ancient history, and wide geographical distribution. Insight into drivers of ampullariid evolution is hampered, however, by the lack of genomic resources. Here, we report the genomes of four ampullariids spanning the Old World (Lanistes nyassanus) and New World (Pomacea canaliculata, P. maculata, and Marisa cornuarietis) clades. The ampullariid genomes have conserved ancient bilaterial karyotype features and a novel Hox gene cluster rearrangement, making them valuable in comparative genomic studies. They have expanded gene families related to environmental sensing and cellulose digestion, which may have facilitated some ampullarids to become notorious invasive pests. In the amphibious Pomacea, novel acquisition of an egg neurotoxin and a protein for making the calcareous eggshell may have been key adaptations enabling their transition from underwater to terrestrial egg deposition.
Collapse
Affiliation(s)
- Jin Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Alice Accorsi
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Alejandro Sánchez Alvarado
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Eric Ross
- Howard Hughes Medical Institute, Kansas City, MO.,Stowers Institute for Medical Research, Kansas City, MO
| | - Yi Lan
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanan Sun
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Alfredo Castro-Vazquez
- Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina.,Instituto de Fisiología (FCM-UNCuyo), Mendoza, Argentina
| | - Israel A Vega
- Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina.,Instituto de Fisiología (FCM-UNCuyo), Mendoza, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP. CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina.,Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP. CONICET CCT La Plata-Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Bert Van Bocxlaer
- Centre national de la recherche scientifique (CNRS), UMR 8198 Evolution, Ecology, Paleotology, Université de Lille, Lille, France
| | | | - Robert H Cowie
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
4
|
Ip JCH, Mu H, Zhang Y, Sun J, Heras H, Chu KH, Qiu JW. Understanding the transition from water to land: Insights from multi-omic analyses of the perivitelline fluid of apple snail eggs. J Proteomics 2018; 194:79-88. [PMID: 30557667 DOI: 10.1016/j.jprot.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/02/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Unlike most of the freshwater gastropod families, the family Ampullariidae includes members that exhibit both underwater and aerial oviposition, making it an ideal model for understanding mechanisms underlying the evolutionary transition from water to land. We applied SDS-PAGE and LC-MS/MS to analyse the proteome of the egg perivitelline fluid (PVF) of Marisa cornuarietis - an aquatic ovipositing ampullariid. Comparison with the reported PVF proteomes of two aerial ovipositing ampullariids (Pomacea canaliculata and P. maculata) showed that the three species all contain several major perivitellins that nourish the embryos. However, M. cornuarietis invests more heavily on immune-related proteins, which might be due to exposure to aquatic pathogens. Interestingly, only the PVF of out-of-water egg laying species have PV2 - a neurotoxin lethal to mice, and a calcium-binding protein which might be involved in the formation of calcareous eggshell. Integrated phylogenetic, evolutionary and gene expressional analyses detected the involvement of gene duplication, positive selection and neofunctionalisation in the formation of several major PVF proteins. Overall, our study provides multiple lines of evidence of adaptive evolution in the PVF proteins, and contributes to a better understanding of how aquatic gastropod ancestors invaded terrestrial habitats. SIGNIFICANCE: Aerial egg deposition has evolved in several groups of animals, but except for Vertebrata little is known about the mechanisms underlying this critical evolution process. We compared aquatic and aerial egg laying apple snails to understand the molecular mechanisms enabling such a transition in egg laying habitat. We found that the composition of perivitelline fluid proteomes of underwater and aerial egg depositors was remarkably different, and then gene duplication and positive selection were responsible for the formation of such novel proteins than enabled the evolutionary transition.
Collapse
Affiliation(s)
- Jack C H Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Huawei Mu
- School of Life Sciences, University of Science and Technology of China, Hefei 230071, China
| | - Yanjie Zhang
- HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Jin Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata (UNLP)-CONICET CCT-La Plata, La Plata, Argentina; Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
5
|
Gurovich FM, Burela S, Martín PR. First description of egg masses, oviposition and copulation of a neglected apple snail endemic to the Iguazú and Alto Paraná Rivers. MOLLUSCAN RESEARCH 2017. [DOI: 10.1080/13235818.2017.1357090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Fernanda M. Gurovich
- Laboratorio de Ecología, Departamento de Biología, Bioquímica y Farmacia, INBIOSUR (CONICET-Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Silvana Burela
- Laboratorio de Ecología, Departamento de Biología, Bioquímica y Farmacia, INBIOSUR (CONICET-Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Pablo R. Martín
- Laboratorio de Ecología, Departamento de Biología, Bioquímica y Farmacia, INBIOSUR (CONICET-Universidad Nacional del Sur), Bahía Blanca, Argentina
| |
Collapse
|