1
|
Rajewska J, Kowalski J, Matys J, Dobrzyński M, Wiglusz RJ. The Use of Lactide Polymers in Bone Tissue Regeneration in Dentistry-A Systematic Review. J Funct Biomater 2023; 14:83. [PMID: 36826882 PMCID: PMC9961440 DOI: 10.3390/jfb14020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Different compositions of biodegradable materials are being investigated to successfully replace non-resorbable ones in bone tissue regeneration in dental surgery. The systematic review tried to address the question, "Can biodegradable polymers act as a replacement for conventional materials in dental surgery procedures?" (2) Methods: An electronic search of the PubMed and Scopus databases was conducted in October 2022. The following keywords were used: (lactide polymers) and (hydroxyapatite or fluorapatite) and (dentistry) and (regeneration). Initially, 59 studies were found. Forty-one studies met the inclusion criteria and were included in the review. (3) Results: These usually improved the properties and induced osteogenesis, tissue mineralisation and bone regeneration by inducing osteoblast proliferation. Five studies showed higher induction of osteogenesis in the case of biomaterials, UV-HAp/PLLA, ALBO-OS, bioresorbable raw particulate hydroxyapatite/poly-L-lactide and PLGA/Hap, compared to conventional materials such as titanium. Four studies confirmed improvement in tissue mineralisation with the usage of biomaterials: hydroxyapatite/polylactic acid (HA/PLA) loaded with dog's dental pulp stem cells (DPSCs), Coll/HAp/PLCL, PDLLA/VACNT-O:nHAp, incorporation of hydroxyapatite and simvastatin. Three studies showed an acceleration in proliferation of osteoblasts for the use of biomaterials with additional factors such as collagen and UV light. (4) Conclusions: Lactide polymers present higher osteointegration and cell proliferation rate than the materials compared. They are superior to non-biodegradable materials in terms of the biocompability, bone remodelling and healing time tests. Moreover, because there is no need of reoperation, as the material automatically degrades, the chance of scars and skin sclerosis is lower. However, more studies involving greater numbers of biomaterial types and mixes need to be performed in order to find a perfect biodegradable material.
Collapse
Affiliation(s)
- Justyna Rajewska
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jakub Kowalski
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Jacek Matys
- Laser Laboratory Dental Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Orthodontics, Technische Universitat Dresden, 01307 Dresden, Germany
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
2
|
Ma R, Wang W, Yang P, Wang C, Guo D, Wang K. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds. Biomed Eng Online 2020; 19:12. [PMID: 32070352 PMCID: PMC7029519 DOI: 10.1186/s12938-020-0755-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone defects are often combined with the risk of infection in the clinic, and artificial bone substitutes are often implanted to repair the defective bone. However, the implant materials are carriers for bacterial growth, and biofilm can form on the implant surface, which is difficult to eliminate using antibiotics and the host immune system. Magnesium (Mg) was previously reported to possess antibacterial potential. METHODS In this study, Mg was incorporated into poly(lactide-co-glycolic acid) (PLGA) to fabricate a PLGA/Mg scaffold using a low-temperature rapid-prototyping technique. All scaffolds were divided into three groups: PLGA (P), PLGA/10 wt% Mg with low Mg content (PM-L) and PLGA/20 wt% Mg with high Mg content (PM-H). The degradation test of the scaffolds was conducted by immersing them into the trihydroxymethyl aminomethane-hydrochloric acid (Tris-HCl) buffer solution and measuring the change of pH values and concentrations of Mg ions. The antibacterial activity of the scaffolds was investigated by the spread plate method, tissue culture plate method, scanning electron microscopy and confocal laser scanning microscopy. Additionally, the cell attachment and proliferation of the scaffolds were evaluated by the cell counting kit-8 (CCK-8) assay using MC3T3-E1 cells. RESULTS The Mg-incorporated scaffolds degraded and released Mg ions and caused an increase in the pH value. Both PM-L and PM-H inhibited bacterial growth and biofilm formation, and PM-H exhibited higher antibacterial activity than PM-L after incubation for 24 and 48 h. Cell tests revealed that PM-H exerted a suppressive effect on cell attachment and proliferation. CONCLUSIONS These findings demonstrated that the PLGA/Mg scaffolds possessed favorable antibacterial activity, and a higher content of Mg (20%) exhibited higher antibacterial activity and inhibitory effects on cell attachment and proliferation than low Mg content (10%).
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
3
|
Moraes PCD, Marques ICDS, Basso FG, Rossetto HL, Pires-de-Souza FDCP, Costa CADS, Garcia LDFR. Repair of Bone Defects with Chitosan-Collagen Biomembrane and Scaffold Containing Calcium Aluminate Cement. Braz Dent J 2018; 28:287-295. [PMID: 29297548 DOI: 10.1590/0103-6440201601454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Innovative biomaterials can provide a promising new direction for the treatment of bone defects, stimulating a proper repair process, with no damage to adjacent tissues. The purpose of this in vivo study was to evaluate the biocompatibility and the osteoinductive capacity of chitosan-collagen biomembrane and scaffold containing calcium aluminate cement. Eighteen New Zealand white rabbits (Oryctolagus cuniculus) were distributed according to the experimental times of analysis (7, 15 and 30 days). Four bone defects were created in the rabbits calvaria, which were individually filled with the biomembrane, scaffold, blood clot (negative control) and autologous bone (positive control). Histopathological analysis was performed using optical microscope at 32´, 64´, 125´ and 320´ magnifications. Cell response to inflammation and new bone tissue formation was quantified using a score system. The biomembrane group presented greater inflammatory response at 15 days, with significant difference to autologous bone group (p<0.05). There was no statistically significant difference for foreign body type reaction among groups (p>0.05). Concerning new bone formation, linear closure of the defect area was observed more evidently in the group with autologous bone. The scaffold group presented similar results compared with the autologous bone group at 30 days (p>0.05). Both tested biomaterials presented similar biocompatibility compared with the control groups. In addition, the biomembrane and scaffold presented similar osteoinductive capacity, stimulating bone repair process in the course of the experimental time intervals.
Collapse
Affiliation(s)
- Paola Castro de Moraes
- Department of Clinics and Surgery, Jaboticabal School of Agricultural and Veterinary Sciences, UNESP - Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | | | - Fernanda Gonçalves Basso
- Department of Physiology and Pathology, Araraquara Dental School, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | | | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, Araraquara Dental School, UNESP - Universidade Estadual Paulista, Araraquara, SP, Brazil
| | - Lucas da Fonseca Roberti Garcia
- Department of Dentistry - Endodontics Division, Health Sciences Center, UFSC - Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Wei DX, Dao JW, Chen GQ. A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802273. [PMID: 29920804 DOI: 10.1002/adma.201802273] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/29/2018] [Indexed: 05/22/2023]
Abstract
To avoid large open surgery using scaffold transplants, small-sized cell carriers are employed to repair complexly shaped tissue defects. However, most cell carriers show poor cell adherences and viability. Therefore, polyhydroxyalkanoate (PHA), a natural biopolymer, is used to prepare highly open porous microspheres (OPMs) of 300-360 µm in diameter, combining the advantages of microspheres and scaffolds to serve as injectable carriers harboring proliferating stem cells. In addition to the convenient injection to a defected tissue, and in contrast to poor performances of OPMs made of polylactides (PLA OPMs) and traditional less porous hollow microspheres (PHA HMs), PHA OPMs present suitable surface pores of 10-60 µm and interconnected passages with an average size of 8.8 µm, leading to a high in vitro cell adhesion of 93.4%, continuous proliferation for 10 d and improved differentiation of human bone marrow mesenchymal stem cells (hMSCs). PHA OPMs also support stronger osteoblast-regeneration compared with traditional PHA HMs, PLA OPMs, commercial hyaluronic acid hydrogels, and carrier-free hMSCs in an ectopic bone-formation mouse model. PHA OPMs protect cells against stresses during injection, allowing more living cells to proliferate and migrate to damaged tissues. They function like a micro-Noah's Ark to safely transport cells to a defect tissue.
Collapse
Affiliation(s)
- Dai-Xu Wei
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Wei Dao
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Nano and Micro Mechanics, Beijing Key Laboratory of Protein Therapeutics, Center for Synthetic and Systems Biology Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Wei DX, Dao JW, Liu HW, Chen GQ. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:473-483. [PMID: 29653500 DOI: 10.1080/21691401.2018.1459635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.
Collapse
Affiliation(s)
- Dai-Xu Wei
- a MOE Key Lab of Bioinformatics , School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing , China
| | - Jin-Wei Dao
- b Beijing Key Laboratory of Protein Therapeutics , Tsinghua University , Beijing , China
| | - Hua-Wei Liu
- c Tsinghua Chang Gung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Guo-Qiang Chen
- a MOE Key Lab of Bioinformatics , School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University , Beijing , China.,b Beijing Key Laboratory of Protein Therapeutics , Tsinghua University , Beijing , China.,d Center for Nano and Micro Mechanics , Tsinghua University , Beijing , China.,e Center for Synthetic and Systems Biology , Tsinghua University , Beijing , China
| |
Collapse
|
6
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
7
|
Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Int J Mol Sci 2017; 18:ijms18050899. [PMID: 28441338 PMCID: PMC5454812 DOI: 10.3390/ijms18050899] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy. Osteogenic differentiation was verified by alizarin red S and alkaline phosphatase (ALP) staining. An in vivo experiment was performed using an alveolar bone defect beagle model, in which defects in three dogs were covered with different membranes. CT and histological analyses at eight weeks after surgery revealed that 3D-printed PCL/β-TCP membranes were more effective than 3D-printed PCL, and substantially better than conventional collagen membranes in terms of biocompatibility and bone regeneration and, thus, at facilitating GBR.
Collapse
|
8
|
Mohamad MY, Mohamed Amin MAI, Harun AF, Md Nazir N, Ahmad Radzi MA, Hashim R, Mat Nawi NF, Zainol I, Zulkifly AH, Sha’ban MB. Fabrication and characterization of three-dimensional poly(lactic acid-co-glycolic acid), atelocollagen, and fibrin bioscaffold composite for intervertebral disk tissue engineering application. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911516686091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of synthetically derived poly(lactic- co-glycolic acid) scaffold and naturally derived materials in regeneration of intervertebral disks has been reported in many previous studies. However, the potential effect of poly(lactic- co-glycolic acid) in combination with atelocollagen or fibrin or both atelocollagen and fibrin bioscaffold composite have not been mentioned so far. This study aims to fabricate and characterize three-dimensional poly(lactic- co-glycolic acid) scaffold incorporated with (1) atelocollagen, (2) fibrin, and (3) both atelocollagen and fibrin combination for intervertebral disk tissue engineering application. The poly(lactic- co-glycolic acid) without any natural, bioscaffold composites was used as control. The chemical conformation, morphology, cell–scaffold attachment, porosity, water uptake capacity, thermal properties, mechanical strength, and pH level were evaluated on all scaffolds using attenuated total reflectance Fourier transform infrared, scanning electron microscope, gravimetric analysis, swelling test, differential scanning calorimetry, and Instron E3000, respectively. Biocompatibility test was conducted to assess the intervertebral disk, annulus fibrosus cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The attenuated total reflectance Fourier transform infrared results demonstrated notable peaks of amide bond suggesting interaction of atelocollagen, fibrin, and both atelocollagen and fibrin combination into the poly(lactic- co-glycolic acid) scaffold. Based on the scanning electron microscope observation, the pore size of the poly(lactic- co-glycolic acid) structure significantly reduced when it was incorporated with atelocollagen and fibrin. The poly(lactic- co-glycolic acid)–atelocollagen scaffolds demonstrated higher significant swelling ratios, mechanical strength, and thermal stability than the poly(lactic- co-glycolic acid) scaffold alone. All the three bioscaffold composite groups exhibited the ability to reduce the acidic poly(lactic- co-glycolic acid) by-product. In this study, the biocompatibility assessment using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cells proliferation assay demonstrated a significantly higher annulus fibrosus cells viability in poly(lactic- co-glycolic acid)–atelocollagen–fibrin compared to poly(lactic- co-glycolic acid) alone. The cellular attachment is comparable in poly(lactic- co-glycolic acid)–atelocollagen–fibrin and poly(lactic- co-glycolic acid)–fibrin scaffolds. Overall, these results may suggest potential use of poly(lactic- co-glycolic acid) combined with atelocollagen and fibrin bioscaffold composite for intervertebral disk regeneration.
Collapse
Affiliation(s)
- Mohd Yusof Mohamad
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Muhammad Azri Ifwat Mohamed Amin
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Ahmad Fahmi Harun
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Noorhidayah Md Nazir
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Muhammad Aa’zamuddin Ahmad Radzi
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Rosyafirah Hashim
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Nur Farhana Mat Nawi
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Ismail Zainol
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak, Malaysia
| | - Ahmad Hafiz Zulkifly
- Department of Orthopedics, Traumatology and Rehabilitation, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Munirah binti Sha’ban
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| |
Collapse
|
9
|
Tissue Reaction to a Novel Bone Substitute Material Fabricated With Biodegradable Polymer-Calcium Phosphate Nanoparticle Composite. IMPLANT DENT 2016; 25:567-74. [DOI: 10.1097/id.0000000000000447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mandibular Tissue Engineering: Past, Present, Future. J Oral Maxillofac Surg 2016; 73:S136-46. [PMID: 26608143 DOI: 10.1016/j.joms.2015.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/19/2022]
Abstract
Almost 2 decades ago, the senior author's (M.T.J.) first article was with our mentor, Dr Leonard B. Kaban, a review article titled "Distraction Osteogenesis: Past, Present, Future." In 1998, many thought it would be impossible to have a remotely activated, small, curvilinear distractor that could be placed using endoscopic techniques. Currently, a U.S. patent for a curvilinear automated device and endoscopic techniques for minimally invasive access for jaw reconstruction exist. With minimally invasive access for jaw reconstruction, the burden to decrease donor site morbidity has increased. Distraction osteogenesis (DO) is an in vivo form of tissue engineering. The DO technique eliminates a donor site, is less invasive, requires a shorter operative time than usual procedures, and can be used for multiple reconstruction applications. Tissue engineering could further reduce morbidity and cost and increase treatment availability. The purpose of the present report was to review our experience with tissue engineering of bone: the past, present, and our vision for the future. The present report serves as a tribute to our mentor and acknowledges Dr Kaban for his incessant tutelage, guidance, wisdom, and boundless vision.
Collapse
|
11
|
Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal 2013; 2013:863157. [PMID: 24163634 PMCID: PMC3791836 DOI: 10.1155/2013/863157] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies.
Collapse
|