1
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
2
|
Gan J, Deng X, Le Y, Lai J, Liao X. The Development of Naringin for Use against Bone and Cartilage Disorders. Molecules 2023; 28:3716. [PMID: 37175126 PMCID: PMC10180405 DOI: 10.3390/molecules28093716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Bone and cartilage disorders are the leading causes of musculoskeletal disability. There is no absolute cure for all bone and cartilage disorders. The exploration of natural compounds for the potential therapeutic use against bone and cartilage disorders is proving promising. Among these natural chemicals, naringin, a flavanone glycoside, is a potential candidate due to its multifaceted pharmacological activities in bone and cartilage tissues. Emerging studies indicate that naringin may promote osteogenic differentiation, inhibit osteoclast formation, and exhibit protective effects against osteoporosis in vivo and in vitro. Many signaling pathways, such as BMP-2, Wnt/β-catenin, and VEGF/VEGFR, participate in the biological actions of naringin in mediating the pathological development of osteoporosis. In addition, the anti-inflammatory, anti-oxidative stress, and anti-apoptosis abilities of naringin also demonstrate its beneficial effects against bone and cartilage disorders, including intervertebral disc degeneration, osteoarthritis, rheumatoid arthritis, bone and cartilage tumors, and tibial dyschondroplasia. Naringin exhibits protective effects against bone and cartilage disorders. However, more efforts are still needed due to, at least in part, the uncertainty of drug targets. Further biological and pharmacological evaluations of naringin and its applications in bone tissue engineering, particularly its therapeutic effects against osteoporosis, might result in developing potential drug candidates.
Collapse
Affiliation(s)
- Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaolan Deng
- Department of Pharmacy, Haikou Affiliated Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Yonghong Le
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou 341000, China
| |
Collapse
|
3
|
Naringin Release from a Nano-Hydroxyapatite/Collagen Scaffold Promotes Osteogenesis and Bone Tissue Reconstruction. Polymers (Basel) 2022; 14:polym14163260. [PMID: 36015515 PMCID: PMC9415011 DOI: 10.3390/polym14163260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Bone fractures and defects are a major health issue and have reportedly affected over 455 million individuals globally to date. Bone tissue engineering has gained great success in bone defect repair and bone reconstruction based on the use of nano-hydroxyapatite (nHA) or collagen (COL). Both nHA and COL exhibit osteogenic induction capacity to support bone tissue regeneration; however, the former suffers from poor flexibility and the latter lacks mechanical strength. Biological scaffolds created by combining nHA and COL (nHA/COL) can overcome the drawbacks imposed by individual materials and, therefore, have become widely applied in tissue engineering. The composite scaffolds can further promote tissue reconstruction by allowing the loading of various growth factors. Naringin (NG) is a natural flavonoid. Its molecular weight is 580.53 Da, lower than that of many growth factors, and it causes minimal immune responses when being introduced in vivo. In addition, naringin is safe, non-toxic, inexpensive to produce, and has superior bio-properties. In this study, we introduced NG into a nHA/COL scaffold (NG/nHA/COL) and exploited the potentials of the NG/nHA/COL scaffold in enhancing bone tissue regeneration. NG/nHA/COL scaffolds were fabricated by firstly combining nHA and collagen at different compositional ratios, followed by NG encapsulation. NG release tests showed that the scaffold with a nHA/COL mass ratio of 7:3 exhibited the optimal property. The in vitro cell study showed the desirable biocompatibility of the NG/nHA/COL scaffold, and its effective promotion for the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), as proved by an increased alkaline phosphatase (ALP) activity, the formation of more calcium nodules, and a higher expression of osteogenic-related genes involving Osteocalcin (OCN), BMP-2, and Osteopontin (OPN), compared with the control and nHA/COL groups. When administered into rats with skull defects, the NG/nHA/COL scaffold significantly promoted the reconstruction of bone tissues and the early repair of skull defects, indicating the great potential of NG/nHA/COL scaffolds in bone tissue engineering.
Collapse
|
4
|
Gao ZR, Feng YZ, Zhao YQ, Zhao J, Zhou YH, Ye Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Ou-Yang ZY, Dusenge MA, Guo Y. Traditional Chinese medicine promotes bone regeneration in bone tissue engineering. Chin Med 2022; 17:86. [PMID: 35858928 PMCID: PMC9297608 DOI: 10.1186/s13020-022-00640-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
Bone tissue engineering (BTE) is a promising method for the repair of difficult-to-heal bone tissue damage by providing three-dimensional structures for cell attachment, proliferation, and differentiation. Traditional Chinese medicine (TCM) has been introduced as an effective global medical program by the World Health Organization, comprising intricate components, and promoting bone regeneration by regulating multiple mechanisms and targets. This study outlines the potential therapeutic capabilities of TCM combined with BTE in bone regeneration. The effective active components promoting bone regeneration can be generally divided into flavonoids, alkaloids, glycosides, terpenoids, and polyphenols, among others. The chemical structures of the monomers, their sources, efficacy, and mechanisms are described. We summarize the use of compounds and medicinal parts of TCM to stimulate bone regeneration. Finally, the limitations and prospects of applying TCM in BTE are introduced, providing a direction for further development of novel and potential TCM.
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Shi G, Yang C, Wang Q, Wang S, Wang G, Ao R, Li D. Traditional Chinese Medicine Compound-Loaded Materials in Bone Regeneration. Front Bioeng Biotechnol 2022; 10:851561. [PMID: 35252158 PMCID: PMC8894853 DOI: 10.3389/fbioe.2022.851561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Bone is a dynamic organ that has the ability to repair minor injuries via regeneration. However, large bone defects with limited regeneration are debilitating conditions in patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an alternative method that mainly involves three factors: scaffolds, biologically active factors, and cells with osteogenic potential. However, active factors such as bone morphogenetic protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown that compounds of traditional Chinese medicines (TCMs) can effectively promote regeneration of bone defects when administered locally and systemically. However, due to the low bioavailability of these compounds, many recent studies have combined TCM compounds with materials to enhance drug bioavailability and bone regeneration. Hence, the article comprehensively reviewed the local application of TCM compounds to the materials in the bone regeneration in vitro and in vivo. The compounds included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and salvianolic acids. These findings will contribute to the potential use of TCM compound-loaded materials in BTE.
Collapse
Affiliation(s)
- Guiwen Shi
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaohua Yang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gaoju Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongguang Ao
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| | - Dejian Li
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Qing Wang, ; Rongguang Ao, ; Dejian Li,
| |
Collapse
|
6
|
Münchow EA, da Silva AF, Piva E, Cuevas-Suárez CE, de Albuquerque MTP, Pinal R, Gregory RL, Breschi L, Bottino MC. Development of an antibacterial and anti-metalloproteinase dental adhesive for long-lasting resin composite restorations. J Mater Chem B 2020; 8:10797-10811. [PMID: 33169763 PMCID: PMC7744429 DOI: 10.1039/d0tb02058c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite all the advances in adhesive dentistry, dental bonds are still fragile due to degradation events that start during application of adhesive agents and the inherent hydrolysis of resin-dentin bonds. Here, we combined two outstanding processing methods (electrospinning and cryomilling) to obtain bioactive (antimicrobial and anti-metalloproteinase) fiber-based fillers containing a potent matrix metalloproteinase (MMP) inhibitor (doxycycline, DOX). Poly(ε)caprolactone solutions containing different DOX amounts (0, 5, 25, and 50 wt%) were processed via electrospinning, resulting in non-toxic submicron fibers with antimicrobial activity against Streptococcus mutans and Lactobacillus. The fibers were embedded in a resin blend, light-cured, and cryomilled for the preparation of fiber-containing fillers, which were investigated with antibacterial and in situ gelatin zymography analyzes. The fillers containing 0, 25, and 50 wt% DOX-releasing fibers were added to aliquots of a two-step, etch-and-rinse dental adhesive system. Mechanical strength, hardness, degree of conversion (DC), water sorption and solubility, bond strength to dentin, and nanoleakage analyses were performed to characterize the physico-mechanical, biological, and bonding properties of the modified adhesives. Statistical analyses (ANOVA; Kruskal-Wallis) were used when appropriate to analyze the data (α = 0.05). DOX-releasing fibers were successfully obtained, showing proper morphological architecture, cytocompatibility, drug release ability, slow degradation profile, and antibacterial activity. Reduced metalloproteinases (MMP-2 and MMP-9) activity was observed only for the DOX-containing fillers, which have also demonstrated antibacterial properties against tested bacteria. Adhesive resins modified with DOX-containing fillers demonstrated greater DC and similar mechanical properties as compared to the fiber-free adhesive (unfilled control). Concerning bonding performance to dentin, the experimental adhesives showed similar immediate bond strengths to the control. After 12 months of water storage, the fiber-modified adhesives (except the group consisting of 50 wt% DOX-loaded fillers) demonstrated stable bonds to dentin. Nanoleakage was similar among all groups investigated. DOX-releasing fibers showed promising application in developing novel dentin adhesives with potential therapeutic properties and MMP inhibition ability; antibacterial activity against relevant oral pathogens, without jeopardizing the physico-mechanical characteristics; and bonding performance of the adhesive.
Collapse
Affiliation(s)
- Eliseu A. Münchow
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Adriana F. da Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Evandro Piva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Carlos E. Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hgo, 42160 Mexico
| | - Maria T. P. de Albuquerque
- Department of Clinical Dentistry, Endodontics, Federal University of Bahia, Salvador, BA 40110-040, Brazil
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Richard L. Gregory
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Alma Mater Studiorum, Bologna, Italy
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
He P, Li Y, Huang Z, Guo ZZ, Luo B, Zhou CR, Li H. A multifunctional coaxial fiber membrane loaded with dual drugs for guided tissue regeneration. J Biomater Appl 2019; 34:1041-1051. [DOI: 10.1177/0885328219894001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Guided tissue regeneration is a standard surgical treatment for periodontal regeneration. For the purpose of producing a novel guided tissue regeneration membrane with antibacterial activity and osteogenesis, coaxial electrospinning was utilized to manufacture core/shell structure fiber mats. Polyvinylpyrrolidone loaded with naringin was worked as the core of the fiber to enrich osteogenesis and poly(lactic-co-glycolic acid)–Poly-l-lactic acid–Poly-dl-lactic acid loaded with metronidazole was designed as the shell of the fiber to prevent or treat infections caused by bacteria. The loaded metronidazole with an initial short-term release and the loaded naringin with a long-term sustainable release allowed the membranes with multifunction of antibacterial activity and boosting the proliferation of osteoblast with improved osteogenesis, respectively. The fibrous membrane also shielded osteoblast and fibroblasts from ingrowth. The study provided a simple coaxial electrospinning crafts for fabricating multifunctional guided tissue regeneration membranes. A graphical abstract is available online as a supplementary material.
Collapse
Affiliation(s)
- Ping He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Yanyi Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Zhen-Zhao Guo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Binghong Luo
- Engineering Research Center of Artificial Organs and Materials, Guangzhou, China
| | - Chang-Ren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Cai YH, Zhao LS. Investigation on the modification of N,N′-adipic bis(benzoic acid) dihydrazide on poly(l-lactic acid). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2498-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Dai H, Zhang H, Ma L, Zhou H, Yu Y, Guo T, Zhang Y, Huang H. Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydr Polym 2019; 209:51-61. [DOI: 10.1016/j.carbpol.2019.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
|
10
|
Zhao LS, Cai YH. Investigating the Physical Properties of Poly(L-lactic acid) Modified Using an Aromatics Succinic Dihydrazide Derivative. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18070088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ramesh S, Lungaro L, Tsikritsis D, Weflen E, Rivero IV, Elfick APD. Fabrication and evaluation of poly(lactic acid), chitosan, and tricalcium phosphate biocomposites for guided bone regeneration. J Appl Polym Sci 2018. [DOI: 10.1002/app.46692] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Srikanthan Ramesh
- Department of Industrial and Manufacturing Systems EngineeringIowa State University Ames Iowa 50011
| | - Lisa Lungaro
- Institute for Bioengineering, University of Edinburgh, Mayfield Road Edinburgh EH9 3DW UK
| | - Dimitrios Tsikritsis
- Institute for Bioengineering, University of Edinburgh, Mayfield Road Edinburgh EH9 3DW UK
| | - Eric Weflen
- Department of Industrial and Manufacturing Systems EngineeringIowa State University Ames Iowa 50011
| | - Iris V. Rivero
- Department of Industrial and Manufacturing Systems EngineeringIowa State University Ames Iowa 50011
| | - Alistair P. D. Elfick
- Institute for Bioengineering, University of Edinburgh, Mayfield Road Edinburgh EH9 3DW UK
| |
Collapse
|