1
|
Guan L, Cai C, Cui J, Huang Y, Zhao J, Chen X, Jiang Q, Li Y. Effect of chitosan and CMCS on dentin after Er:YAG laser irradiation: shear bond strength and surface morphology analysis. BMC Oral Health 2024; 24:402. [PMID: 38553692 PMCID: PMC10979601 DOI: 10.1186/s12903-024-04097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVES The aim of the present study was to evaluate the effect of chitosan and carboxymethyl chitosan (CMCS) on dentin surface morphology and bonding strength after irradiation of Er:YAG laser. METHODS Eighty-four laser-irradiated dentin samples were randomly distributed into three groups (n = 28/group) according to different surface conditioning process: deionized water for 60s; 1wt% chitosan for 60s; or 1wt% CMCS for 60s. Two specimens from each group were subjected to TEM analysis to confirm the presence of extrafibrillar demineralization on dentin fibrils. Two specimens from each group were subjected to morphological analysis by SEM. Seventy-two specimens (n = 24/group) were prepared, with a composite resin cone adhered to the dentin surface, and were then randomly assigned to one of two aging processes: storage in deionized water for 24 h or a thermocycling stimulation. The shear bond strength of laser-irradiated dentin to the resin composite was determined by a universal testing machine. Data acquired in the shear bond strength test was analyzed by one-way ANOVA with the Tukey honestly significant difference post hoc test and Independent Samples t-test (α = 0.05). RESULTS CMCS group presented demineralized zone and a relatively smooth dentin surface morphology. CMCS group had significantly higher SBS value (6.08 ± 2.12) without aging (p < 0.05). After thermal cycling, both chitosan (5.26 ± 2.30) and CMCS group (5.82 ± 1.90) presented higher bonding strength compared to control group (3.19 ± 1.32) (p < 0.05). Chitosan and CMCS group preserved the bonding strength after aging process (p > 0.05). CONCLUSIONS CMCS has the potential to be applied in conjunction with Er:YAG laser in cavity preparation and resin restoration.
Collapse
Affiliation(s)
- Lanxi Guan
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Chen Cai
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingheng Cui
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yuting Huang
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jian Zhao
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xuan Chen
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qianzhou Jiang
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Yang Li
- Department of Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
2
|
Tang K, Wang F, Dai SQ, Yang ZY, Duan LY, Luo ML, Tay FR, Niu LN, Zhou W, Chen JH. Enhanced Bonding to Caries-Affected Dentin Using an Isocyanate-Based Primer. J Dent Res 2023; 102:1444-1451. [PMID: 37950512 DOI: 10.1177/00220345231199416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Dental caries is the most common oral disease and the most common cause of resin restorations. In minimally invasive dentistry, the principle behind cavity preparation is to remove external caries-infected dentin (CID) and preserve internal caries-affected dentin (CAD) and sound dentin (SD). The cavity floor is mainly composed of CAD, but the poor bonding performance of CAD has become a widespread concern. This study evaluated the performance of a new collagen-reactive monomer (ITCM) used as a primer to improve the bonding performance of CAD. The experimental specimens were grouped as follows: SD, CAD, and ITCM-pretreated CAD (CAD-ITCM). Dentin slices were obtained for attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis. The bonded samples were subjected to microtensile bond strength analysis after 24 h of water storage or aging by thermocycling, and the bonding interface quality was evaluated by nanoleakage assessment, interfacial nanoindentation testing, and in situ zymography. Cytotoxicity experiments with ITCM were performed. ATR-FTIR showed that the isocyanate groups in ITCM can covalently bind and form hydrogen bonds with the collagen in CAD to mediate chemical bonding. ITCM pretreatment significantly improved the bond strength of CAD (P < 0.05), reduced interfacial nanoleakage, improved the sealing of the bonding interface, enhanced the homogeneity of the hybrid layer, and inhibited matrix metalloproteinase activity. In addition, ITCM presented acceptable biocompatibility for dental restorative application. Taken together, this study reported the application of ITCM to induce collagen-based chemical bonding in the CAD bonding system, which fills the gap in strategies to improve the bonding performance of CAD immediately and after aging and has important clinical application prospects.
Collapse
Affiliation(s)
- K Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - F Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - S Q Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Z Y Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Y Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - M L Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Xi'an, Beijing, China
| | - F R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L N Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - J H Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Kamitsu T, Shimomura-Kuroki J, Shinkai K. Effect of viscosity of experimental universal adhesive on bond strength to dentin prepared with Er:YAG laser. Sci Rep 2023; 13:7900. [PMID: 37193742 DOI: 10.1038/s41598-023-34984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
The aim of this study was to clarify the effect of universal adhesive (UA) viscosity on the bond strength of resin composite to dentin prepared with Er:YAG laser. Four experimental UAs (SI-1, SI-2, SI-3, and SI-4) were developed by adding 1, 2, 3, and 4 wt/% nanosilica to BeautyBond Xtreme (Shofu), respectively. BeautyBond Xtreme was used as a control (SI-0). The viscosities of experimental UAs were measured using a B-type viscometer. After bovine mandibular anterior teeth were ground with #600 emery paper to obtain the flattened dentin surfaces, the dentin surfaces were cut thinly by irradiating the Er:YAG laser. Specimens were prepared using the respective UA and flowable resin composite and subjected to the microtensile bond strength (µTBS) test. The data from viscosity measurement and the μTBS test were statistically analyzed using the Kruskal-Wallis test. The mean values of viscosity significantly differed among the all experimental groups (p < 0.01). The μTBS of SI-1 and SI-2 was significantly higher than that of SI-0, SI-3, and SI-4 (p < 0.001). The μTBS of SI-0 was significantly lower than that of SI-4 (p < 0.001). The viscosities of the experimental universal adhesives significantly affected their bond strength to laser-cut dentin.
Collapse
Affiliation(s)
- Takehiro Kamitsu
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Junko Shimomura-Kuroki
- Department of Pediatric Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| |
Collapse
|