1
|
Saffar-Avval S, Gharehveran MM, Alvarez Ruiz R, Lee LS, Chaplin BP. Matrix Effects on Electrochemical Oxidation of Per- and Polyfluoroalkyl Substances in Sludge Centrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40245167 DOI: 10.1021/acs.est.4c13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This study investigated the electrochemical oxidation of per- and polyfluoroalkyl substances (PFAS) using a Ti4O7 anode in centrate from sludge dewatering. Synthetic solutions containing perfluorooctanoic acid (PFOA), other PFAS, and inorganic constituents (phosphate, ammonium, chloride, carbonate, and acetate salts) found in centrate were studied to assess their impact on the oxidation process. PFOA removal decreased from 95% in a stable electrolyte (NaClO4) to 81% in a Na2HPO4 electrolyte and 30% in a solution mimicking concentrated centrate. X-ray photoelectron spectroscopy detected phosphate and nitrogen species on the electrode surface. At potentials required to oxidize PFAS (>3.0 V/SHE), phosphate and ammonium were oxidized to radicals that blocked electrode sites, inhibiting PFAS removal and shifting PFOA oxidation from first-order kinetics. The kinetics were accurately modeled using a Langmuir-Hinshelwood approach with a transient inhibition term. Results suggested that phosphate, ammonium, and bicarbonate ions reduced hydroxyl radical availability, thereby limiting PFOA defluorination. In concentrated centrate, 95% of the chemical oxygen demand and 93% of total PFAS were removed after 233 s of electrolysis at 30 mA cm-2. However, partial degradation of perfluorohexanoic acid and accumulation of perfluoroheptanoic acid, attributed to inorganic electrode fouling, suggested the need for a multistage reactor system for more complete PFAS mineralization.
Collapse
Affiliation(s)
- Shirin Saffar-Avval
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| | | | - Rodrigo Alvarez Ruiz
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Linda S Lee
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
- Interdisciplinary Ecological Sciences & Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
3
|
Affiliation(s)
- Takao HANAWA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|