Lubas M, Jasinski JJ, Zawada A, Przerada I. Influence of Sandblasting and Chemical Etching on Titanium 99.2-Dental Porcelain Bond Strength.
MATERIALS (BASEL, SWITZERLAND) 2021;
15:116. [PMID:
35009263 PMCID:
PMC8746101 DOI:
10.3390/ma15010116]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The metal-ceramic interface requires proper surface preparation of both metal and ceramic substrates. This process is complicated by the differences in chemical bonds and physicochemical properties that characterise the two materials. However, adequate bond strength at the interface and phase composition of the titanium-bioceramics system is essential for the durability of dental implants and improving the substrates' functional properties. In this paper, the authors present the results of a study determining the effect of mechanical and chemical surface treatment (sandblasting and etching) on the strength and quality of the titanium-low-fusing dental porcelain bond. To evaluate the strength of the metal-ceramic interface, the authors performed mechanical tests (three-point bending) according to EN ISO 9693 standard, microscopic observations (SEM-EDS), and Raman spectroscopy studies. The results showed that depending on the chemical etching medium used, different bond strength values and failure mechanisms of the metal-ceramic system were observed. The analyzed samples met the requirements of EN ISO 9693 for metal-ceramic systems and received strength values above 25 MPa. Higher joint strength was obtained for the samples after sandblasting and chemical etching compared to the samples subjected only to sandblasting.
Collapse