1
|
Chen Z, Wang Y, Jin X, Zhang Y, Wen X, Zuo J, Pi P. High-Flux Steady-State Demulsification of Oil-In-Water Emulsions by Superhydrophilic-Oleophobic Copper Foams with Ultra-Small Pores Under Pressure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407798. [PMID: 39344556 DOI: 10.1002/smll.202407798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
3D superwetting materials struggle to maintain high-flux steady-state demulsification for oil-in-water emulsions because the accumulated oil within the material is difficult to discharge rapidly. The water flow shear force can swiftly remove the oil from the anti-fouling surface. In this study, by introducing nanofibers and carbon nanotubes and chemical modification, a superhydrophilic-oleophobic copper foam with pores of several micrometers is prepared, which can achieve a continuous demulsification process with steady-state flux over 57000 L m-2 h-1 for oil-in-water emulsions and rapid hydraulic-driven oil release under an additional pressure of 5 kPa. Thanks to the ultra-small pores of the copper foam, the steady-state demulsification efficiency can be still maintained at over 97.5%. During the demulsification process, the accumulation of oil and surfactants within the copper foam can be maintained at low levels, achieving dynamic equilibrium. With the aid of second-stage superhydrophilic copper mesh, the demulsified oil-water mixtures can be rapidly separated. This high-flux, steady-state, and efficient demulsification process shows great potential for industrial applications.
Collapse
Affiliation(s)
- Zehao Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunjia Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xuekai Jin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yunpeng Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiufang Wen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jihao Zuo
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, P. R. China
| | - Pihui Pi
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Ozer NE, Sahin Z, Yikici C, Duyan S, Kilicarslan MA. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing. Odontology 2024; 112:460-471. [PMID: 37819468 DOI: 10.1007/s10266-023-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The aim of this study was to evaluate the surface roughness and contact angle of composite resins produced by CAD/CAM milling and three-dimensional (3D) printing for permanent restorations as well as the adhesion of S. mutans and S. sanguinis bacteria to these composites. Three CAD/CAM milling composite resins (Vita Enamic-VE, Cerasmart-CE, Lava Ultimate-LU) and three 3D printing resins (Varseo Smile Crown plus-VSC, Saremco print Crowntech-SPC, Formlabs 3B Permanent crown-FLP) were selected. Twenty samples were prepared for each group. Using a contact profilometer, the surface roughness was determined, and an optical goniometer was used to quantify the contact angle. To evaluate the bacterial adhesion, composite specimens were immersed in mucin containing artificial saliva. All samples were incubated for 24 h at 37°C in 5% CO2. CFUs were determined by counting colonies after the incubation period. Surface roughness values of test samples were the highest in the Group VSC [0.46 (0.14) µm], whereas the lowest values were found in the Group LU [0.23 (0.05) µm]. There was no statistically significant difference between the groups in contact angle values (p > 0.05). The S. mutans adhesion extent on the Group SPC was statistically higher compared to all other materials with p < 0.05. For S. sanguinis, the lowest bacterial adhesion value was recorded in Group CE (3.00 × 104 CFU/ml) and statistically significant differences were found with Group VE and VSC (p < 0.05). Different digital manufacturing techniques and material compositions can affect the surface roughnesses of composite resins. All composite resin samples have hydrophobic characteristics. Microbial adhesion of the tested composite resins may be varied depending on the bacterial species. S. mutans showed much more adhesion to these materials than S. sanguinis.
Collapse
Affiliation(s)
- Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., 06510, Çankaya, Ankara, Turkey.
| | - Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., 06510, Çankaya, Ankara, Turkey
| | - Cansu Yikici
- Department of Restorative Dentistry, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Serhat Duyan
- Department of Medical Microbiology, Department of Microbiology, University of Health Sciences, Gülhane Training and Research Hospital, Etlik, Ankara, Turkey
| | - Mehmet Ali Kilicarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| |
Collapse
|
3
|
Zhang H, Guo Z. Biomimetic materials in oil/water separation: Focusing on switchable wettabilities and applications. Adv Colloid Interface Sci 2023; 320:103003. [PMID: 37778250 DOI: 10.1016/j.cis.2023.103003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Clean water resources are crucial for human society, as the leakage and discharge of oily wastewater not only harm the economy but also disrupt our living environment. Therefore, there is an urgent need for efficient oil-water separation technology. Surfaces with switchable superwetting behavior have garnered significant attention due to their importance in both fundamental research and practical applications. This review introduces the fundamental principles of wettability in the oil-water separation process, the basic theory of switchable wettability, and the mechanisms involved in oil-water separation. Subsequently, the review discusses the research progress, challenges, and issues associated with three conventional types of special wettability materials: superhydrophobic/superoleophilic materials, superhydrophilic/superoleophobic materials, and superhydrophilic/underwater superoleophobic materials. Most importantly, it provides a detailed exploration of recent advancements in switchable wettability smart materials, which combine elements of traditional special wettability materials. These include stimulus-responsive smart materials, pre-wetting-induced materials, and Janus materials. The discussion covers key response factors, detailed examples of representative works, design concepts, and fabrication strategies. Finally, the review offers a comprehensive summary of switchable superwetting smart materials, encompassing their advantages and disadvantages, persistent challenges, and future prospects.
Collapse
Affiliation(s)
- Huimin Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
4
|
Fei Z, Liu P, Cheng C, Wei R, Xiao P, Zhang Y. Solvent-Responsive Magnetic Beads for Accurate Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4924-4934. [PMID: 36648175 DOI: 10.1021/acsami.2c18684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although numerous approaches were proposed for the nucleic acid (NA)-based SARS-CoV-2 detection, the nonideal NA desorption efficiency of conventional magnetic beads (MBs) limits their widespread application. In this study, we developed solvent-responsive MBs (called responsive MBs), which, in the presence of buffers, modulated the absorption and desorption capacities of NA by flipping the surface -COO-. Relative to other commercial MBs, responsive MBs exhibited similar absorption profiles and markedly enhanced desorption profiles. When applied for NA detection of complex samples, responsive MBs exhibited better performance of RNA detection than DNA, with obvious advantages in sensitivity. Specifically, the RNA and DNA desorption rates of commercial MBs were ∼85 and 82.5%, while those of responsive MBs were nearly 94 and 93.5%, respectively. Furthermore, responsive MBs exhibited remarkable extraction ability in a wide range of tissues and better performance of RNA extraction than DNA. When applied for SARS-CoV-2 detection, the responsive MBs along with the simulated digital RT-LAMP (a previously established apparatus) further improved detection efficiency, yielding a precise quantitative detection as low as 25 copies and an ultimate sensibility detection of 5 copies/mL. It was also successfully employed in numerous NA-based technologies such as polymerase chain reaction (PCR), sequencing, and so on.
Collapse
Affiliation(s)
- Zhongjie Fei
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| | - Chu Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Rongbin Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Pengfeng Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Xuanwu Road, Nanjing 210096, Jiangsu, China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, No. 2, Southeast University Road, Nanjing 211189, Jiangsu, China
| |
Collapse
|
5
|
Okada A, Imai S, Kikuchi T, Matin K, Otsuka R, Terai T, Okumura T, Yamamoto T, Hanada N. Evaluation of the cariogenic potential of a probiotic candidate strain Lactobacillus gasseri YIT 12321. Arch Oral Biol 2022; 136:105364. [DOI: 10.1016/j.archoralbio.2022.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
|
6
|
Hassan R, Aslam Khan MU, Abdullah AM, Abd Razak SI. A Review on Current Trends of Polymers in Orthodontics: BPA-Free and Smart Materials. Polymers (Basel) 2021; 13:1409. [PMID: 33925332 PMCID: PMC8123702 DOI: 10.3390/polym13091409] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials have always established an edge over other classes of materials due to their potential applications in various fields of biomedical engineering. Orthodontics is an emerging field in which polymers have attracted the enormous attention of researchers. In particular, thermoplastic materials have a great future utility in orthodontics, both as aligners and as retainer appliances. In recent years, the use of polycarbonate brackets and base monomers bisphenol A glycerolate dimethacrylate (bis-GMA) has been associated with the potential release of bisphenol A (BPA) in the oral environment. BPA is a toxic compound that acts as an endocrine disruptor that can affect human health. Therefore, there is a continuous search for non-BPA materials with satisfactory mechanical properties and an esthetic appearance as an alternative to polycarbonate brackets and conventional bis-GMA compounds. This study aims to review the recent developments of BPA-free monomers in the application of resin dental composites and adhesives. The most promising polymeric smart materials are also discussed for their relevance to future orthodontic applications.
Collapse
Affiliation(s)
- Rozita Hassan
- Orthodontic Unit, School of Dental Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| | - Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
- Nanoscience and Technology Department (NS & TD), National Center for Physics, Islamabad 44000, Pakistan
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Abdul Manaf Abdullah
- Orthodontic Unit, School of Dental Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia;
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Malaysia;
- Center for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai 81300, Malaysia
| |
Collapse
|
7
|
Takahashi M, Matin K, Matsui N, Shimizu M, Tsuda Y, Uchinuma S, Hiraishi N, Nikaido T, Tagami J. Effects of silver diamine fluoride preparations on biofilm formation of Streptococcus mutans. Dent Mater J 2021; 40:911-917. [PMID: 33731542 DOI: 10.4012/dmj.2020-341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effects of silver diamine fluoride preparations (SDFs) on cariogenic biofilm formation on root dentin (RD) were investigated. Streptococcus mutans (S. mutans) biofilms were formed on bovine RD blocks coated with one of three the SDFs (38%-SDF, 3.8%-SDF and 35%-SDF+potassium-iodide; SDF+KI) and a non-coated Control which were quantified (spectrometric-measurement) and thickness measured (optical coherence tomography) after 20 h. Bacterial viability test (BacLight) and biofilm-morphometry (SEM) of 2 h biofilms were also performed. The amounts of biofilms (bacteria and water insoluble glucan) and the thickness of biofilm were minimum on 38%-SDF specimen; 3.8%-SDF and SDF+KI had significantly more than that, but had significantly less than Control (p<0.05). Most S. mutans cells found dead and morphology damaged by 38%-SDF. Some dead bacteria and remarkably damaged biofilms were observed in case of 3.8%-SDF and SDF+KI. Inhibition potential of 3.8%-SDF and SDF+KI on S. mutans biofilm formation is almost similar, although not equivalent to 38%-SDF.
Collapse
Affiliation(s)
- Motoi Takahashi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU).,Endowed Department of International Oral Health Science, Tsurumi University School of Dental Medicine
| | - Naoko Matsui
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Miyuki Shimizu
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Yuka Tsuda
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Shigeki Uchinuma
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| | - Toru Nikaido
- Department of Operative Dentistry, Asahi University
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU)
| |
Collapse
|
8
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Turetgen I. Reduction of Biofilm Formation on Cooling Tower Heat Exchangers using Nano-silica Coating : Environmentally sustainable antifouling coating demonstrated on stainless steel heat exchanger tubes. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15895565390677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cooling towers are industrial cooling units operating to dissipate heat. As with any surface in contact with aqueous systems, biofilm formation appears on the surface of heat exchangers. Although biofilm formation on plastic tower fill in wet cooling towers has been studied widely,
no studies were found regarding biofilm formation on steel heat exchangers in closed-loop systems. In this study, heat exchangers were coated with nano-silica, which is known to reduce the formation of biofilm. Natural biofilm formation was monitored for six months. Biofouling was examined
monthly using epifluorescence microscopy by assessing the numbers of live and dead bacteria. It was observed that the biofilm layer formed on the nano-silica coated heat exchanger surfaces was significantly lower than on the control surfaces. 3 log microbial reduction was recorded on coated
surfaces in the first month. After six months, total biomass on control surfaces reached 1.28 × 1012 cell cm−2, while the biomass on nano-silica coated surfaces was 6.3 × 104 cell cm−2.
Collapse
Affiliation(s)
- Irfan Turetgen
- Basic and Industrial Microbiology Section, Department of Biology, Faculty of Science, Istanbul University 34134 Vezneciler Istanbul, Turkey
| |
Collapse
|
10
|
Yamamoto S, Sayed M, Takahashi M, Matin K, Hiraishi N, Nikaido T, Burrow MF, Tagami J. Effects of a surface prereacted glass-ionomer filler coating material on biofilm formation and inhibition of dentin demineralization. Clin Oral Investig 2020; 25:683-690. [PMID: 32968946 DOI: 10.1007/s00784-020-03577-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study investigated the ability of a surface prereacted glass-ionomer (S-PRG) coating material to inhibit the biofilm formation and demineralization of dentin. METHODS AND MATERIALS Dentin specimens were randomly divided into three groups: (1) no coating (control), (2) S-PRG filler-containing coat, and (3) a nonS-PRG filler-containing coat. Streptococcus mutans biofilms were grown on the dentin surfaces in a microcosm for 20 h. Then, the quantity of bacteria and water-insoluble glucan in the retained biofilm on the dentin surface were measured. Regarding demineralization inhibition test, specimens were demineralized for 5 days then sectioned into halves and observed under confocal laser scanning microscope (CLSM). One-way ANOVA and Tukey's HSD were used for statistical analysis. RESULTS The estimated mean surface roughness for specimens in the S-PRG group was statistically significantly higher than the estimates for both the nonS-PRG and the control group specimens. The quantity of bacteria and water-insoluble glucan/mm2 revealed that the S-PRG group prevented biofilm formation and bacterial adhesion to the dentin surface compared with the control and nonS-PRG groups. The S-PRG group recorded the highest acid-resistance ability with no surface loss. CONCLUSION Application of S-PRG barrier coat on dentin surfaces can inhibit biofilm formation as well as protecting the dentin surface against demineralization. CLINICAL SIGNIFICANCE Coating material containing S-PRG fillers might be used for caries prevention, through inhibiting biofilm formation, enhancing mineralization, and reducing acidic attack by cariogenic bacteria.
Collapse
Affiliation(s)
- Shiori Yamamoto
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mahmoud Sayed
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Motoi Takahashi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Endowed Department of International Oral Health Science, Tsurumi University, 2-1-3, Tsurumi, Tsurumi-ku, Kanagawa, 230-0063, Japan
| | - Noriko Hiraishi
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University, Mizuho, Gifu, Japan
| | - Michael F Burrow
- Faculty of Dentistry, University of Hong Kong, Hong Kong, SAR, China
| | - Junji Tagami
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
11
|
Zupancic Cepic L, Dvorak G, Piehslinger E, Georgopoulos A. In vitro adherence of Candida albicans to zirconia surfaces. Oral Dis 2020; 26:1072-1080. [PMID: 32125751 DOI: 10.1111/odi.13319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES This study aimed to characterize surface properties such as roughness (Ra) and surface-free energy (SFE) of glazed and polished yttria-stabilized zirconia and to evaluate in vitro adherence of fungus Candida albicans and salivary bacteria, Staphylococcus epidermidis, mixed with C. albicans to these substrata. Additionally, the influence of salivary proteins (albumin, mucin and α-amylase) on yeast adhesion was studied. MATERIAL AND METHODS Ra and SFE of glazed and polished zirconia discs were measured. Specimens were wetted with saliva and salivary proteins prior to incubation with C. albicans and mixed suspension of C. albicans and S. epidermidis for 24 hr, respectively. Microbial adhesion was quantified by counting colony-forming units (CFU). Differences in physicochemical properties were proved by t test. "Linear mixed model" with the factors "type of surface" and "wetting media" was applied to analyse the effects on fungal adhesion (p < .05). RESULTS SFE and Ra of glazed specimens were significantly higher than corresponding values of polished ones. The wetting media significantly changed the fungal binding (p = .0016). Significantly higher quantities of adhering fungi were found after mucin incubation compared to saliva (p = .004). For the factor "surface" as well as the interaction between "surface" and "wetting media," no statistically significant differences have been found. In mixed suspension, the growth of Candida was completely prevented. CONCLUSIONS Glazed and polished zirconia differs in terms of physicochemical surface properties. These differences appear to be modulated by pellicle coating affecting the biomass of adhered Candida. Mucin seems to be good binding sites for adhesion of C. albicans.
Collapse
Affiliation(s)
- Lana Zupancic Cepic
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Gabriella Dvorak
- Department for Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Eva Piehslinger
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Apostolos Georgopoulos
- Core Facility Oral Microbiology and Hygiene, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Saad A, Nikaido T, Abdou A, Matin K, Burrow MF, Tagami J. Inhibitory effect of zinc-containing desensitizer on bacterial biofilm formation and root dentin demineralization. Dent Mater J 2019; 38:940-946. [PMID: 31406097 DOI: 10.4012/dmj.2018-352] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study compared the effect of a novel zinc containing, Caredyne Shield (CS), and a fluoroaluminocalciumsilicate-based, Nanoseal (NS) desensitizers on dentin tubule occlusion, inhibition of Streptococcus mutans (S. mutans) biofilm growth, and resistance to bacterial demineralization. Desensitizers were applied to simulated hypersensitive bovine dentin, with distilled water used as a control. S. mutans biofilms were grown on the surface of each specimen in an oral biofilm simulator. CS showed the least bacterial count and water insoluble glucan amount followed by NS. Transverse micro radiography revealed that both CS and NS showed significant reduction in mineral loss and lesion depth of the associated lesion. Scanning electron micrographs showed that the two desensitizers formed obvious depositions on the dentin surfaces, occlusion of tubules and mineral tag formation.
Collapse
Affiliation(s)
- Amr Saad
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University
| | - Toru Nikaido
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry, Asahi University
| | - Ahmed Abdou
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University
| | - Khairul Matin
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University
| | | | - Junji Tagami
- Department of Cariology and Operative Dentistry, Tokyo Medical and Dental University
| |
Collapse
|
13
|
Guan Y, Cheng F, Pan Z. Superwetting Polymeric Three Dimensional (3D) Porous Materials for Oil/Water Separation: A Review. Polymers (Basel) 2019; 11:E806. [PMID: 31064062 PMCID: PMC6571923 DOI: 10.3390/polym11050806] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022] Open
Abstract
Oil spills and the emission of oily wastewater have triggered serious water pollution and environment problems. Effectively separating oil and water is a world-wide challenge and extensive efforts have been made to solve this issue. Interfacial super-wetting separation materials e.g., sponge, foams, and aerogels with high porosity tunable pore structures, are regarded as effective media to selectively remove oil and water. This review article reports the latest progress of polymeric three dimensional porous materials (3D-PMs) with super wettability to separate oil/water mixtures. The theories on developing super-wetting porous surfaces and the effects of wettability on oil/water separation have been discussed. The typical 3D porous structures (e.g., sponge, foam, and aerogel), commonly used polymers, and the most reported techniques involved in developing desired porous networks have been reviewed. The performances of 3D-PMs such as oil/water separation efficiency, elasticity, and mechanical stability are discussed. Additionally, the current challenges in the fabrication and long-term operation of super-wetting 3D-PMs in oil/water separation have also been introduced.
Collapse
Affiliation(s)
- Yihao Guan
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Fangqin Cheng
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| | - Zihe Pan
- Institute of Resources and Environmental Engineering, Shanxi University, 92 Wucheng Road, Xiaodian District, Taiyuan 030006, China.
- Shanxi Collaborative Innovation Center of High Value-Added Utilization of Coal-Related Wastes, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
14
|
In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. MATERIALS 2018; 11:ma11122484. [PMID: 30563297 PMCID: PMC6316998 DOI: 10.3390/ma11122484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Objective: To compare the efficacy of four commonly used clinical procedures in removing Streptococcus gordonii biofilms from titanium disks, and the recolonization of the treated surfaces. Background: Successful peri-implantitis treatment depends on the removal of the dental biofilm. Biofilm that forms after implant debridement may threaten the success of the treatment and the long-term stability of the implants. Methods:S. gordonii biofilms were grown on titanium disks for 48 h and removed using a plastic curette, air-abrasive device (Perio-Flow®), titanium brush (TiBrush®), or implantoplasty. The remaining biofilm and the recolonization of the treated disks were observed using scanning electron microscopy and quantified after staining with crystal violet. Surface roughness (Ra and Rz) was measured using a profilometer. Results:S. gordonii biofilm biomass was reduced after treatment with Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05), but not plastic curette (p > 0.05), compared to the control group. Recolonization of S. gordonii after treatment was lowest after Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05 vs. control), but there was no difference between the plastic curette and the control group (p > 0.05). Ra and Rz values ranged from 1–6 µm to 1–2 µm and did not differ statistically between the control, plastic curette, Perio-Flow, and TiBrush groups. However, the implantoplasty group showed a Ra value below 1 µm (p < 0.01, ANOVA, Tukey). Conclusions: Perio-Flow®, TiBrush®, and implantoplasty were more effective than the plastic curette at removing the S. gordonii biofilm and preventing recolonization. These results should influence the surgical management of peri-implantitis.
Collapse
|
15
|
Hayati A, Najafi F, Tabatabaei FS. Effects of a new chlorhexidine varnish on Streptococcus mutans biofilm formation in vitro. J Basic Clin Physiol Pharmacol 2018; 29:573-579. [PMID: 29679527 DOI: 10.1515/jbcpp-2017-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/22/2018] [Indexed: 11/15/2022]
Abstract
Abstract
Background
Local sustained-release drug delivery systems increase the substantivity of drugs in the oral environment and subsequently enhance their therapeutic effects. This study sought to compare the effects of two commercially available varnishes and one experimental chlorhexidine (CHX) varnish on formation of Streptococcus mutans biofilm. The solubility rates of the varnishes were evaluated as well.
Methods
Standard acrylic discs were fabricated and divided into groups based on the varnish applied to the disc surfaces, namely, V-varnish, Pascal, and experimental CHX varnish. The effects of the varnishes on S. mutans biofilm were assessed after 48 h. Bacterial growth on the discs was evaluated by colony count and scanning electron microscopy (SEM). Solubility was assessed by immersing the samples in phosphate buffered saline and recording their weight changes at different times. The data were analyzed using one-way ANOVA.
Results
In the Pascal and experimental varnish groups, the total number of bacteria did not differ from that in the negative control group. The SEM findings confirmed the aforementioned results. Solubility varied significantly among the materials. V-varnish was detached from the surfaces after 2 days. No significant weight change was noted in the experimental varnish group at 14 days, while Pascal varnish showed gradual weight loss from the 5th day to the 10th day and had a plateau thereafter.
Conclusions
Biofilm formation was inhibited by the Pascal and experimental varnishes but not by the V-varnish. The highest acceptable rate of solubility was observed in the Pascal samples.
Collapse
Affiliation(s)
- Ali Hayati
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhud Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Dental Research Center, Research Institute of Dental Sciences, Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjou Boulvard, Evin, P.O. 19839, Tehran, Iran, Phone/Fax: +982122173754.,Marquette University, School of Dentistry, Milwaukee, WI 53233, USA, Phone: +1-646-659-5484, E-mail:
| |
Collapse
|
16
|
Méndez-Albores A, González-Arellano SG, Reyes-Vidal Y, Torres J, Ţălu Ş, Cercado B, Trejo G. Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: Characterization and antibacterial activity. JOURNAL OF ALLOYS AND COMPOUNDS 2017. [DOI: 10.1016/j.jallcom.2017.03.226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS 2017; 125:392-417. [PMID: 28407425 DOI: 10.1111/apm.12675] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022]
Abstract
The use of implantable medical devices is a common and indispensable part of medical care for both diagnostic and therapeutic purposes. However, as side effect, the implant of medical devices quite often leads to the occurrence of difficult-to-treat infections, as a consequence of the colonization of their abiotic surfaces by biofilm-growing microorganisms increasingly resistant to antimicrobial therapies. A promising strategy to combat device-related infections is based on anti-infective biomaterials that either repel microbes, so they cannot attach to the device surfaces, or kill them in the surrounding areas. In general, such biomaterials are characterized by antifouling coatings, exhibiting low adhesion or even repellent properties towards microorganisms, or antimicrobial coatings, able to kill microbes approaching the surface. In this light, the present overview will address the development in the last two decades of antifouling and antimicrobial biomaterials designed to potentially limit the initial stages of microbial adhesion, as well as the microbial growth and biofilm formation on medical device surfaces.
Collapse
Affiliation(s)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome
| | | | | |
Collapse
|
18
|
Jiang Y, Yin YJ, Zha XC, Dou XQ, Feng CL. Wettability regulated gram-negative bacterial adhesion on biomimetic hierarchical structures. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Hwang GB, Allan E, Parkin IP. White Light-Activated Antimicrobial Paint using Crystal Violet. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15033-9. [PMID: 26479680 DOI: 10.1021/acsami.5b06927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crystal violet (CV) was incorporated into acrylic latex to produce white-light-activated antimicrobial paint (WLAAP). Measurement of the water contact angle of the WLAAP showed that the water contact angle increased with increasing CV concentration. In a leaching test over 120 h, the amount of CV that leached from the WLAAPs was close to the detection limit (<0.03%). The WLAAPs were used to coat samples of polyurethane, and these showed bactericidal activity against Escherichia coli, which is a key causative agent of healthcare-associated infections (HAIs). A reduction in the numbers of viable bacteria was observed on the painted coated polyurethane after 6 h in the dark, and the bactericidal activity increased with increasing CV concentration (P < 0.1). After 6 h of white light exposure, all of coated polyurethanes demonstrated a potent photobactericidal activity, and it was statistically confirmed that the WLAAP showed better activity in white light than in the dark (P < 0.05). At the highest CV concentration, the numbers of viable bacteria fell below the detection limit (<10(3) CFU/mL) after 6 h of white light exposure. The difference in antimicrobial activity between the materials in the light and dark was 0.48 log at CV 250 ppm, and it increased by 0.43 log at each increment of CV 250 ppm. The difference was the highest (>1.8 log) at the highest CV concentration (1000 ppm). These WLAAPs are promising candidates for use in healthcare facilities to reduce HAIs.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Elaine Allan
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London , 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
20
|
Hwang GB, Noimark S, Page K, Sehmi S, Macrobert AJ, Allan E, Parkin IP. White light-activated antimicrobial surfaces: effect of nanoparticles type on activity. J Mater Chem B 2016; 4:2199-2207. [DOI: 10.1039/c6tb00189k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Toluidine blue O (TBO) dye together with either silver (Ag) nanoparticles (NPs), gold (Au) NPs, or a mixture of Ag and Au NPs (Mix Ag–Au NPs) were incorporated into polyurethane to make antimicrobial surfaces using a swell-encapsulation-shrink process.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Sacha Noimark
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Kristopher Page
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Sandeep Sehmi
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| | - Alexander J. Macrobert
- National Medical Laser Centre
- UCL Division of Surgery and Interventional Science
- Royal Free Campus
- London
- UK
| | - Elaine Allan
- Division of Microbial Diseases
- UCL Eastman Dental Institute
- University College London
- London WC1X 8LD
- UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre
- Department of Chemistry
- University College London
- London
- UK
| |
Collapse
|
21
|
Dou XQ, Zhang D, Feng C, Jiang L. Bioinspired Hierarchical Surface Structures with Tunable Wettability for Regulating Bacteria Adhesion. ACS NANO 2015; 9:10664-72. [PMID: 26434605 DOI: 10.1021/acsnano.5b04231] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
To circumvent the influence from varied topographies, the systematic study of wettability regulated Gram-positive bacteria adhesion is carried out on bioinspired hierarchical structures duplicated from rose petal structures. With the process of tuning the interfacial chemical composition of the self-assembled films from supramolecular gelators, the varied wettable surfaces from superhydrophilicity to superhydrophobicity can be obtained. The investigation of Gram-positive bacteria adhesion on the hierarchical surfaces reveals that Gram-positive bacteria adhesion is crucially mediated by peptidoglycan due to its different interaction mechanisms with wettable surfaces. The study makes it possible to systematically study the influence mechanism of wettability regulated bacteria adhesion and provides a sight to make the bioinspired topographies in order to investigate wettability regulated bioadhesion.
Collapse
Affiliation(s)
- Xiao-Qiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Di Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University , 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
22
|
Oliveira AS, Kaizer MR, Azevedo MS, Ogliari FA, Cenci MS, Moraes RR. (Super)hydrophobic coating of orthodontic dental devices and reduction of early oral biofilm retention. Biomed Mater 2015; 10:065004. [DOI: 10.1088/1748-6041/10/6/065004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Zhang L, Zhang L, Yang Y, Zhang W, Lv H, Yang F, Lin C, Tang P. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2nanotubes. J Biomed Mater Res B Appl Biomater 2015; 104:1004-12. [PMID: 25995046 DOI: 10.1002/jbm.b.33454] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/28/2015] [Accepted: 05/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Licheng Zhang
- Department of Orthopaedics; General Hospital of Chinese PLA; Beijing 100853 China
| | - Lihai Zhang
- Department of Orthopaedics; General Hospital of Chinese PLA; Beijing 100853 China
| | - Yun Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| | - Wei Zhang
- Department of Orthopaedics; General Hospital of Chinese PLA; Beijing 100853 China
| | - Houchen Lv
- Department of Orthopaedics; General Hospital of Chinese PLA; Beijing 100853 China
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190 China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen 361005 China
| | - Peifu Tang
- Department of Orthopaedics; General Hospital of Chinese PLA; Beijing 100853 China
| |
Collapse
|
24
|
Luo Q, Huang Y, Zha G, Chen Y, Deng X, Zhang K, Zhu W, Zhao S, Li X. Topography-dependent antibacterial, osteogenic and anti-aging properties of pure titanium. J Mater Chem B 2015; 3:784-795. [PMID: 32262169 DOI: 10.1039/c4tb01556h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Topography-dependent antibacterial, osteogenic properties of pure titanium and its biological aging mechanism.
Collapse
Affiliation(s)
- Qiaojie Luo
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Ying Huang
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Guangyu Zha
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yadong Chen
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry
- Peking University School and Hospital of Stomatology
- Beijing
- P. R. China
| | - Kai Zhang
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Shifang Zhao
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xiaodong Li
- The Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
25
|
Yang H, You W, Shen Q, Wang X, Sheng J, Cheng D, Cao X, Wu C. Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles. RSC Adv 2014. [DOI: 10.1039/c3ra45382k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro. MATERIALS 2013; 6:5659-5674. [PMID: 28788415 PMCID: PMC5452733 DOI: 10.3390/ma6125659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/26/2022]
Abstract
Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a), B1a with zirconium oxide (ZrO2) coating (B2a), B1a with zirconia-based composite coating (B1b) and B1a with zirconia-based composite and ZrO2 coatings (B2b). Bovine enamel slabs (BES) served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM); DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22%) were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80%) were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.
Collapse
|
27
|
Al-Ahmad A, Wiedmann-Al-Ahmad M, Fackler A, Follo M, Hellwig E, Bächle M, Hannig C, Han JS, Wolkewitz M, Kohal R. In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol 2013; 58:1139-47. [PMID: 23694907 DOI: 10.1016/j.archoralbio.2013.04.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Biofilm formation on implant materials plays a major role in the aetiology of periimplantitis. The aim of this study was to examine in vivo the initial bacterial adhesion on six different implant materials. METHODS The implant materials Ti-m, TiUnite®, ZiUnite®, ATZ-m, ATZ-s, TZP-A-m were tested using bovine enamel slabs as controls. All materials, fixed on splint systems, were examined after 30 min and 120 min of oral exposure. DAPI staining was used for quantitative analysis of the initially adherent microorganisms. Initial adherent microorganisms were visualised by fluorescence In situ-hybridisation (FISH) and quantified by confocal laser scanning microscopy (CLSM). The targets of the oligonucleotide probes were Eubacteria, Veillonella spp., Fusobacterium nucleatum, Actinomyces naeslundii and Streptococcus spp. RESULTS DAPI analysis showed that increasing the time of oral exposure resulted in an increasing amount of initial adherent bacteria. The highest level of colonisation was on ZiUnite®, with the lowest occurring on the bovine enamel, followed by Ti-m. This early colonisation correlated significantly with the surface roughnesses of the materials. FISH and CLSM showed no significant differences relating to total bacterial composition. However, Streptococcus spp. was shown to be the main colonisers on each of the investigated materials. CONCLUSION it could be shown that within an oral exposure time of 30 min and 120 min, despite the salivary acquired pellicle initial biofilm formation is mainly influenced directly or indirect by the material surface topography. Highly polished surfaces should minimise the risk of biofilm formation, plaque accumulation and possibly periimplantitis.
Collapse
Affiliation(s)
- A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Albert-Ludwigs-University, Hugstetter Strasse 55, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
WATANABE T, TATEISHI T, SAKAI T, TOYAMA K, HAYAKAWA Y, ONO T. Fluorinated Polymer/Silica Composites with Remarkable Mechanical and Antifouling Properties^|^mdash;Design for Artificial Teeth with Improved Durability and Esthetics. KOBUNSHI RONBUNSHU 2013. [DOI: 10.1295/koron.70.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Zhang X, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 2013. [DOI: 10.1039/c3ra40497h] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Hayakawa Y, Ono T, Watanabe T, Tateishi T, Sakai T, Toyama K. Anti-Staining Polymer Composites Consisting of a Methacrylic Resin Matrix Containing Biphenyl and Fluorinated Moieties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.780949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Kuribayashi M, Kitasako Y, Matin K, Sadr A, Shida K, Tagami J. Intraoral pH measurement of carious lesions with qPCR of cariogenic bacteria to differentiate caries activity. J Dent 2012; 40:222-8. [PMID: 22222970 DOI: 10.1016/j.jdent.2011.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVES A low pH environment is created by cariogenic bacteria. This study was aimed to measure pH of carious lesions intraorally using a micro-pH sensor, and assess predominant acid-producing cariogens by qPCR to differentiate caries activities. METHODS 103 dentine lesions classified as active or arrested caries based on the clinical and radiological examinations were collected from patients after intraoral measurement of the lesion surface pH using a micro-pH sensor. Quantitative detection of genomic DNA copies of target cariogenic bacteria (mutans streptococci and Lactobacillus spp.) in each lesion was performed using real-time PCR. Correlation between the pH ranges and the number of bacterial species was examined by Spearman test. RESULTS 50 samples were diagnosed as active and 53 as arrested lesions. Statistically significant difference was observed on average surface pH value between active and arrested lesions (p<0.05). Prevalence of Lactobacillus spp. was higher in active lesions than in arrested lesions (76% vs. 58% of samples, respectively). When the carious lesions were categorised into four different pH ranges (up to 5.5, from 5.6 to 5.8, from 5.9 to 6.1 and 6.2 or above), increased prevalence of Lactobacillus spp. was observed with decrease of pH levels. A significant negative relationship was found between pH value and number of Lactobacillus spp. (r=-0.209, p<0.05) but no such correlation was found for mutans streptococci. CONCLUSIONS Intraoral pH measurement might be clinically useful to determine acidity of the local environment of carious lesions as one aspect of the caries activity assessment. CLINICAL SIGNIFICANCE The population of certain bacteria may indicate activity of carious lesions. Intraoral pH measurement of the carious lesions using a micro-pH sensor may be a clinically feasible method for assessment of lesion acidity.
Collapse
Affiliation(s)
- Megumi Kuribayashi
- Cariology and Operative Dentistry, Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Howarter JA, Genson KL, Youngblood JP. Wetting behavior of oleophobic polymer coatings synthesized from fluorosurfactant-macromers. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2022-2030. [PMID: 21526842 DOI: 10.1021/am200255v] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Architecturally similar monomers were copolymerized with a water-oil discriminate fluorosurfactant to create hydrophilic-oleophobic coatings. Acrylic acid, hydroxyethyl methacrylate, and methyl methacrylate were used as comonomers with the fluorosurfactant macromer. The homopolymers of the selected comonomers are water-soluble, water-swellable, and water-insoluble, respectively, thus coupling the surfactant monomer in varying concentration within polymers of varying hydrophilicity. Wetting behavior of water and hexadecane were examined as a function of copolymer composition, thus revealing critical structure-property relationships for the surfactant-based system. Acrylic acid copolymers and hydroxyethyl methacrylate copolymers both exhibited a hexadecane contact angle which exceeded the water contact angle. This condition predicted an ability to "self-clean" oil-based foulants. The most oleophobic of the self-cleaning copolymers had an advancing hexadecane contact angle of 73° and an advancing water contact angle of 40°. It was determined that the advancing and receding water and hexadecane contact angle response varies montonically for each copolymer type as the surface concentration of the surfactant is varied. Comparing between copolymer types revealed large differences in wetting response. Methyl methacrylate copolymers with 2.8 mol % surfactant had advancing water contact angle 82° and advancing hexadecane contact angle 26°, which is neither oleophobic nor self-cleaning. In contrast, acrylic acid copolymers with 3.1 mol % surfactant had advancing water contact angle of 44° and advancing hexadecane contact angle of 52°, creating a self-cleaning coating. Thus, the nature of the comonomer exerts a greater influence than the surfactant content on the wetting behavior and self-cleaning ability of the final coating.
Collapse
Affiliation(s)
- John A Howarter
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
33
|
Nikaido T, Inoue G, Takagaki T, Waidyasekera K, Iida Y, Shinohara MS, Sadr A, Tagami J. New strategy to create “Super Dentin” using adhesive technology: Reinforcement of adhesive–dentin interface and protection of tooth structures. JAPANESE DENTAL SCIENCE REVIEW 2011. [DOI: 10.1016/j.jdsr.2010.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Tang P, Zhang W, Wang Y, Zhang B, Wang H, Lin C, Zhang L. Effect of Superhydrophobic Surface of Titanium on Staphylococcus aureusAdhesion. JOURNAL OF NANOMATERIALS 2011; 2011:1-8. [PMID: 0 DOI: 10.1155/2011/178921] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the systemic antibiotics prophylaxis, orthopedic implants still remain highly susceptible to bacterial adhesion and resulting in device-associated infection. Surface modification is an effective way to decrease bacterial adhesion. In this study, we prepared surfaces with different wettability on titanium surface based on TiO2nanotube to examine the effect of bacterial adhesion. Firstly, titanium plates were calcined to form hydrophilic TiO2nanotube films of anatase phase. Subsequently, the nanotube films and inoxidized titaniums were treated with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES), forming superhydrophobic and hydrophobic surfaces. Observed by SEM and contact angle measurements, the different surfaces have different characteristics.Staphylococcus aureus(SA) adhesion on different surfaces was evaluated. Our experiment results show that the superhydrophobic surface has contact angles of water greater than 150∘and also shows high resistance to bacterial contamination. It is indicated that superhydrophobic surface may be a factor to reduce device-associated infection and could be used in clinical practice.
Collapse
Affiliation(s)
- Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Wei Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Yan Wang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Boxun Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Hao Wang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Changjian Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 36100, China
| | - Lihai Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
35
|
Tanaka Y, Matin K, Gyo M, Okada A, Tsutsumi Y, Doi H, Nomura N, Tagami J, Hanawa T. Effects of electrodeposited poly(ethylene glycol) on biofilm adherence to titanium. J Biomed Mater Res A 2010; 95:1105-13. [PMID: 20878986 DOI: 10.1002/jbm.a.32932] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 03/19/2010] [Accepted: 05/21/2010] [Indexed: 11/07/2022]
Abstract
Protein-resistant coatings have been studied for inhibiting biofilm formation on implant devices. In this study, titanium (Ti) surfaces were biofunctionalized with poly(ethylene glycol) (PEG) by electrodeposition and were evaluated as biofilm substrates under an oral simulated environment. Streptococcus gordonii, an early colonizer of oral biofilms, was inoculated on Ti and PEG-electrodeposited Ti (PEG-Ti) surfaces and was analyzed quantitatively and topographically. Streptococcus mutans supplemented with sucrose, a late colonizer mainly found in dental plaque, was also used to form biofilms on the surfaces of Ti and PEG-Ti for 20 h followed by sonication as a means of detaching the biofilms. The results indicated that the attachment of S. gordonii on PEG-Ti surfaces was inhibited compared with Ti, and the S. mutans biofilm was easier to be detached from the surface of PEG-Ti than that of Ti. Moreover, the presence of PEG electrodeposited on Ti surface inhibited salivary protein adsorption. The degree of detachment of biofilms from PEG-Ti was associated with the inhibition of the salivary protein adsorption, suggesting weak basal attachment of the biofilms to the electrodeposited surfaces. Therefore, controlling protein adsorption at the initial stage of biofilm formation may be an effective strategy to protect metal surfaces from bacterial contamination not only in dental manipulations but also in orthopedic applications.
Collapse
Affiliation(s)
- Yuta Tanaka
- Department of Metals, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
TAJIMA K, NIKAIDO T, INOUE G, IKEDA M, TAGAMI J. Effects of coating root dentin surfaces with adhesive materials. Dent Mater J 2009; 28:578-86. [DOI: 10.4012/dmj.28.578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|