1
|
Cho H, Yang J, Kang JY, Kim KE. Inhibitory Effects of Fermented Sprouted Oat Extracts on Oxidative Stress and Melanin Overproduction. Antioxidants (Basel) 2024; 13:544. [PMID: 38790649 PMCID: PMC11117960 DOI: 10.3390/antiox13050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.
Collapse
Affiliation(s)
- Hyeijin Cho
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.C.); (J.Y.K.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
2
|
Yang J, Cho H, Gil M, Kim KE. Anti-Inflammation and Anti-Melanogenic Effects of Maca Root Extracts Fermented Using Lactobacillus Strains. Antioxidants (Basel) 2023; 12:antiox12040798. [PMID: 37107174 PMCID: PMC10135397 DOI: 10.3390/antiox12040798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Maca is a well-known biennial herb with various physiological properties, such as antioxidant activity and immune response regulation. In this study, the antioxidant, anti-inflammatory, and anti-melanogenic effects of fermented maca root extracts were investigated. The fermentation was carried out using Lactobacillus strains, such as Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Lactobacillus gasseri. In RAW 264.7 cells, the non-fermented maca root extracts increased the secretion of nitric oxide (NO), an inflammatory mediator, in a dose-dependent manner. In contrast, the fermented extracts showed considerably lower NO secretion than the non-fermented extracts at concentrations of 5% and 10%. This indicates the effective anti-inflammatory effects of fermented maca. The fermented maca root extracts also inhibited tyrosinase activity, melanin synthesis, and melanogenesis by suppressing MITF-related mechanisms. These results show that fermented maca root extracts exhibit higher anti-inflammatory and anti-melanogenesis effects than non-fermented maca root extracts. Thus, maca root extracts fermented using Lactobacillus strains have the potential to be used as an effective cosmeceutical raw material.
Collapse
|
3
|
Sangkaew O, Prombutara P, Roytrakul S, Yompakdee C. Metatranscriptomics Reveals Sequential Expression of Genes Involved in the Production of Melanogenesis Inhibitors by the Defined Microbial Species in Fermented Unpolished Black Rice. Microbiol Spectr 2023; 11:e0313922. [PMID: 36861996 PMCID: PMC10100879 DOI: 10.1128/spectrum.03139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Fermented products require metabolic enzymes from the microbial community for desired final products. Using a metatranscriptomic approach, the role of microorganisms in fermented products on producing compounds with a melanogenesis inhibition activity has not yet been reported. Previously, unpolished black rice (UBR) fermented with the E11 starter containing Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Rhizopus oryzae, and Pediococcus pentosaceus (FUBR) showed potent melanogenesis inhibition activity. This study aimed to investigate the function of these defined microbial species in producing melanogenesis inhibitors in the FUBR using a metatranscriptomic approach. The melanogenesis inhibition activity increased in a fermentation time-dependent manner. Genes related to melanogenesis inhibitors synthesis such as carbohydrate metabolism, amino acids synthesis, fatty acids/unsaturated fatty acids synthesis, and carbohydrate transporters were analyzed. Most genes from R. oryzae and P. pentosaceus were upregulated in the early stage of the fermentation process, while those of S. cerevisiae and S. fibuligera were upregulated in the late stage. FUBR production using different combinations of the four microbial species shows that all species were required to produce the highest activity. The FUBR containing at least R. oryzae and/or P. pentosaceus exhibited a certain level of activity. These findings were in agreement with the metatranscriptomic results. Overall, the results suggested that all four species sequentially and/or coordinately synthesized metabolites during the fermentation that led to a FUBR with maximum melanogenesis inhibition activity. This study not only sheds light on crucial functions of certain microbial community on producing the melanogenesis inhibitors, but also paves the way to initiate quality improvement of melanogenesis inhibition activity in the FUBR. IMPORTANCE Fermentation of food is a metabolic process through the action of enzymes from certain microorganisms. Although roles of the microbial community in the fermented food were investigated using metatranscriptomic approach in terms of flavors, but no study has been reported so far on the function of the microorganisms on producing compounds with a melanogenesis inhibition activity. Therefore, this study explained the roles of the defined microorganisms from the selected starter in the fermented unpolished black rice (FUBR) that can produce melanogenesis inhibitor(s) using metatranscriptomic analysis. Genes from different species were upregulated at different fermentation time. All four microbial species in the FUBR sequentially and/or coordinately synthesized metabolites during fermentation that led to a FUBR with maximal melanogenesis inhibition activity. This finding contributes to a deeper understanding of the roles of certain microbial community during fermentation and led to the knowledge-based improvement for the fermented rice with potent melanogenesis inhibition activity.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Science & Bioinformatics Center, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
4
|
Miglitol, an Oral Antidiabetic Drug, Downregulates Melanogenesis in B16F10 Melanoma Cells through the PKA, MAPK, and GSK3β/β-Catenin Signaling Pathways. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010115. [PMID: 36615308 PMCID: PMC9822252 DOI: 10.3390/molecules28010115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Hyperpigmentation is a common condition that causes darker spots or patches on the skin, which often look brown, black, gray, red, or pink. This results in unresolved psychological impact due to high anxiety, depression, and somatoform disorder. We aimed to repurpose an antidiabetic drug, miglitol, as an effective compound against hyperpigmentation when applied as a cosmeceutical agent. The present study investigated the antimelanogenic effects of miglitol and the trehalase inhibitor validamycin A. Miglitol in isolation exhibited no cytotoxicity and significantly reduced the melanin production and intracellular tyrosinase activity in B16F10 melanoma cells. The Western blotting results showed that miglitol reduces the expression of melanogenic regulatory factors, including tyrosinase, tyrosinase-related protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). Mechanistically, miglitol appears to suppress melanin synthesis through cAMP-dependent protein kinase (PKA)-dependent downregulation of MITF, a master transcription factor in melanogenesis. The antimelanogenic effects of miglitol was mediated by downregulation of the p38 signaling pathway and upregulation of extracellular signal-regulated kinase (ERK). Moreover, miglitol decreases P-GSK3β and β-catenin levels compared to those in the untreated group. However, miglitol activated P-β-catenin expression compared to that in the untreated group. Finally, we tested the potential of miglitol in topical application through primary human skin irritation tests on the normal skin (upper back) of 33 volunteers. In these assays, miglitol (125 and 250 μM) did not induce any adverse reactions. Taken together, these findings suggest that the regulation of melanogenesis by miglitol may be mediated by the PKA, MAPK, and GSK3β/β-Catenin signaling pathways and that miglitol might provide new insights into drug repurposing for the treatment of hyperpigmentation symptoms.
Collapse
|
5
|
Girawale SD, Meena SN, Nandre VS, Waghmode SB, Kodam KM. Biosynthesis of vanillic acid by Ochrobactrum anthropi and its applications. Bioorg Med Chem 2022; 72:117000. [PMID: 36095944 DOI: 10.1016/j.bmc.2022.117000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022]
Abstract
Vanillic acid has always been in high-demand in pharmaceutical, cosmetic, food, flavor, alcohol and polymer industries. Present study achieved highly pure synthesis of vanillic acid from vanillin using whole cells of Ochrobactrum anthropi strain T5_1. The complete biotransformation of vanillin (2 g/L) in to vanillic acid (2.2 g/L) with 95 % yield was achieved in single step in 7 h, whereas 5 g/L vanillin was converted to vanillic acid in 31 h. The vanillic acid thus produced was validated using LC-MS, GC-MS, FTIR and NMR. Further, vanillic acid was evaluated for in vitro anti-tyrosinase and cytotoxic properties on B16F1 skin cell line in dose dependent manner with IC50 values of 15.84 mM and 9.24 mM respectively. The in silico Swiss target study predicted carbonic acid anhydrase IX and XII as key targets of vanillic acid inside the B16F1 skin cell line and revealed the possible mechanism underlying cell toxicity. Molecular docking indicated a strong linkage between vanillic acid and tyrosinase through four hydrogen and several hydrophobic bonds, with ΔG of -3.36 kJ/mol and Ki of 3.46 mM. The bioavailability of vanillic acid was confirmed by the Swiss ADME study with no violation of Lipinski's five rules.
Collapse
Affiliation(s)
- Savita D Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Surya N Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Vinod S Nandre
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan M Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
6
|
Shin KK, Park SH, Lim HY, Lorza LR, Qomaladewia NP, You L, Aziz N, Kim SA, Lee JS, Choung ES, Noh JK, Yie DK, Jeong D, Lee J, Cho JY. In Vitro Anti-Photoaging and Skin Protective Effects of Licania macrocarpa Cuatrec Methanol Extract. PLANTS (BASEL, SWITZERLAND) 2022; 11:1383. [PMID: 35631808 PMCID: PMC9144732 DOI: 10.3390/plants11101383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022]
Abstract
The Licania genus has been used in the treatment of dysentery, diabetes, inflammation, and diarrhea in South America. Of these plants, the strong anti-inflammatory activity of Licania macrocarpa Cuatrec (Chrysobalanaceae) has been reported previously. However, the beneficial activities of this plant on skin health have remained unclear. This study explores the protective activity of a methanol extract (50-100 μg/mL) in the aerial parts of L. macrocarpa Cuatrec (Lm-ME) and its mechanism, in terms of its moisturizing/hydration factors, skin wrinkles, UV radiation-induced cell damage, and radical generation (using RT/real-time PCR, carbazole assays, flowcytometry, DPPH/ABTS, and immunoblotting analysis). The anti-pigmentation role of Lm-ME was also tested by measuring levels of melanin, melanogenesis-related genes, and pigmentation-regulatory proteins. Lm-ME decreased UVB-irradiated death in HaCaT cells by suppressing apoptosis and inhibited matrix metalloproteinases 1/2 (MMP1/2) expression by enhancing the activity of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. It was confirmed that Lm-ME displayed strong antioxidative activity. Lm-ME upregulated the expression of hyaluronan synthases-2/3 (HAS-2/3) and transglutaminase-1 (TGM-1), as well as secreted levels of hyaluronic acid (HA) via p38 and JNK activation. This extract also significantly inhibited the production of hyaluronidase (Hyal)-1, -2, and -4. Lm-ME reduced the melanin expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1/2 (TYRP-1/2) in α-melanocyte-stimulating hormone (α-MSH)-treated B16F10 cells via the reduction of cAMP response element-binding protein (CREB) and p38 activation. These results suggest that Lm-ME plays a role in skin protection through antioxidative, moisturizing, cytoprotective, and skin-lightening properties, and may become a new and promising cosmetic product beneficial for the skin.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Hye Yeon Lim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Laura Rojas Lorza
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nurinanda Prisky Qomaladewia
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Long You
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
| | - Soo Ah Kim
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (S.A.K.); (J.S.L.); (E.S.C.)
| | - Jin Kyung Noh
- Instituto de BioEconomia, El Batan, Quito 170135, Ecuador;
| | - Dong-Keun Yie
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Deok Jeong
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (K.K.S.); (L.R.L.); (N.P.Q.); (L.Y.); (N.A.); (D.J.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea; (S.H.P.); (H.Y.L.)
| |
Collapse
|
7
|
Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, Yodkeeree S, Limtrakul (Dejkriengkraikul) P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. PLANTS (BASEL, SWITZERLAND) 2021; 10:1383. [PMID: 34371586 PMCID: PMC8309239 DOI: 10.3390/plants10071383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Recently, the global trend toward the use of natural extracts and antioxidant agents in the cosmetic cream industry to produce whitening effects has been increasing. This has also been a persistent trend in Thailand. In this study, samples of commercial cosmetic creams on the Thai market were assessed for a functional evaluation of their antioxidant activity, tyrosinase inhibitory effects, and phenolic contents. Samples were extracted using hot water and sonication extraction method to obtain the functional cream extracts. Total phenolic contents in all samples were within the range of 0.46-47.92 mg GAE/30 g cream. Antioxidant activities of the cream extracts were within the range of 3.61-43.98 mg Trolox equivalent/30 g cream, while tyrosinase inhibition activities were within the range of 2.58-97.94% of inhibition. With regard to the relationship between the total phenolic content and the antioxidant activity of the cosmetic creams, Pearson's correlation coefficient revealed a moderately positive relationship with an r value of 0.6108. Furthermore, the relationship between the antioxidant activity and the tyrosinase inhibitory activity of the cosmetic creams was highly positive with an r value of 0.7238. Overall, this study demonstrated that the total phenolic contents in the functional cosmetic creams could play a role in antioxidant activity and anti-tyrosinase activities. The findings indicate how the whitening and antioxidant effects of cosmetic creams could be maintained after the products have been formulated, as this concern can affect the consumer's decision when purchasing cosmetic products.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Veterinary Biosciences and Veterinary Public Health, Division of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
8
|
Sangkaew O, Phaonakrop N, Roytrakul S, Yompakdee C. Metaproteomic investigation of functional insight into special defined microbial starter on production of fermented rice with melanogenesis inhibition activity. PLoS One 2020; 15:e0241819. [PMID: 33147601 PMCID: PMC7641363 DOI: 10.1371/journal.pone.0241819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Fermentation of rice grains requires diverse metabolic enzymes to be synchronously synthesized by the microbial community. Although many studies have used a metaproteomic approach to investigate the roles of microorganisms in improving the flavor of fermented foods, their roles in producing compounds with biological activity have not yet been reported. In a previous study the ferment obtained from unpolished black rice (UBR) fermented with a defined microbial starter (De-E11), comprised of Rhizopus oryzae, Saccharomycopsis fibuligera, Saccharomyces cerevisiae, and Pediococcus pentosaceus, (fermented UBR; FUBR) showed a strong melanogenesis inhibition activity in B16F10 melanoma cells. Hence, in this study, the roles of these microorganisms in producing the melanogenesis inhibitor(s) in FUBR was investigated using a metaproteomic approach. The melanogenesis inhibition activity of the FUBR liquid (FR-Liq) was found to increase with longer fermentation times. R. oryzae and S. cerevisiae were the major hosts of proteins related to the biosynthesis of melanogenesis inhibitor(s) in the FUBR. During fermentation, the enzymes involved in the degradation of UBR and in the carbohydrate metabolic process were identified. These enzymes were associated with the process of releasing of bioactive compound(s) from UBR and the synthesis of organic acids from the microorganisms, respectively. In addition, enzymes involved in the synthesis of some known melanogenesis inhibitor(s) and in the degradation of the melanogenesis stimulator (arsenate) were detected. Varying the combination of microorganisms in the De-E11 starter to produce the FR-Liq revealed that all four microorganisms were required to produce the most potent melanogenesis inhibition activity. Taken together with the metaproteomics results, this suggested that the microorganisms in De-E11 synchronously synthesize the FR-Liq with melanogenesis inhibition activity. In conclusion, this information on the metaproteome in FUBR will increase our understanding of the microbial metabolic modes and could lead to knowledge-based improvements in the fermented rice process to produce melanogenesis inhibitor(s).
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- * E-mail:
| |
Collapse
|