He Z, Ding B, Pei S, Cao H, Liang J, Li Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2023;
905:166917. [PMID:
37704128 DOI:
10.1016/j.scitotenv.2023.166917]
[Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Although organic fertilizers played an important role in enhancing crop yield and soil quality, the effects of organic fertilizers replacing chemical fertilizers on greenhouse gas (GHG) emissions remained inconsistent, and further impeding the widespread adoption of organic fertilizers. Therefore, a global meta-analysis used 568 comparisons from 137 publications was conducted to evaluate the responses of GHG emissions to organic fertilizers replacing chemical fertilizers. The results indicated that organic fertilizers replacing chemical fertilizers significantly decreased N2O emissions, but increasing global warming potential (GWP) by enhancing CH4 and CO2 emissions. When replacing chemical fertilizers with organic fertilizers, a variety of factors such as climate conditions, soil conditions, crop types and agricultural practices influenced the GHG emissions and GWP. Among these factors, fertilizer organic C and available N level were the main factors affecting GHG and GWP. However, considering the feasibility and ease of optimizing these factors, fertilizer organic C, C/N and N substitution rate showed a more favorable choice for GWP reduction, and their interactions significantly affecting GWP. Moreover, considering the distinct GHG emissions patterns in dryland and paddy field, the analysis of optimizing GWP based on fertilizer organic C, C/N and N substitution rate was separately conducted. According to the simulation optimization, the optimal combination of fertilizer organic C (137.2-228.8 g·kg-1), C/N (6.9-52.0) and N substitution rate (20.0-22.5 %) effectively suppressed the extent of increase in GWP in paddy field compared with chemical fertilizers. In dryland, optimizing fertilizer organic C (100-278 g·kg-1), C/N (70.7-76.6) and N substitution rate (10.2-16.0 %) led to a reduction in GWP compared with chemical fertilizers, indicating that dryland are more suitable for promoting organic fertilizer application. In conclusion, this meta-analysis study quantitatively assessed the GHG emissions when organic fertilizers replacing chemical fertilizers, and also provided a scientific basis for the mitigation of GHG emissions by organic fertilizers management.
Collapse