1
|
Duan Y, Wang ZJ, Mei LN, Shen JS, He XC, Luo XD. Anti-Candida albicans effect and mechanism of Pachysandra axillaris Franch. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119284. [PMID: 39725364 DOI: 10.1016/j.jep.2024.119284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pachysandra axillaris Franch., a traditional herbal medicine in Yunnan, has been used to treat traumatic injuries and stomach ailments, some of which were related to microbial infections in conventional applications, but, to the best of our knowledge, the antifungal bioactivity of this plant and its main antifungal components have not been previously reported. AIM OF THE STUDY To identify the antifungal compounds of P. axillaris against fluconazole-resistant C. albicans in vitro and in vivo, and then elucidate the underlying mechanism of action. MATERIALS AND METHODS The antifungal compounds were obtained by bioguided isolation, and then they were investigated in vitro by MIC, growth curves, time-kill assay, and drug resistance induction. The antifungal mechanism was explored using combined network pharmacology and metabolomic analysis, and further supported by analyzing sterol composition using LC-MS/MS, scanning and transmission electron microscopy observation of fungal cell morphology, examining its effects on cell membranes using the fluorescent probes and RT-qPCR. Additionally, the antifungal effect in vivo was evaluated by a murine C. albicans skin infection model. RESULTS Three bioactive compounds from P. axillaris efficiently inhibited fluconazole-resistant C. albicans (MIC = 4 μg/mL), in which the major compound, pachysamine M, affected the ergosterol biosynthesis pathway by inhibiting ERG genes (ERG1, ERG4, ERG7, ERG9, and ERG24), leading to the accumulation of squalene, lanosterol, and zymosterol. So, pachysamine M targeted cell membranes in vitro by reducing the ergosterol level, to avoid drug resistance. In addition, it promoted wound healing, reduced fungal load, and alleviated inflammation in vivo. CONCLUSIONS Pachysamine M, an antifungal compound without reported before, inhibited fluconazole-resistant C. albicans efficiently in vitro and in vivo, and its mechanism targeted cell membranes, reducing the risk of drug resistance, which validated the traditional use of P. axillaris for the treatment of fungal skin infections.
Collapse
Affiliation(s)
- Yu Duan
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Li-Na Mei
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Jia-Shan Shen
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xing-Chao He
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, PR China.
| |
Collapse
|
2
|
Fonseca Do Carmo PH, Pinheiro Lage AC, Garcia MT, Soares da Silva N, Santos DA, Mylonakis E, Junqueira JC. Resveratrol-coated gold nanorods produced by green synthesis with activity against Candida albicans. Virulence 2024; 15:2416550. [PMID: 39427236 PMCID: PMC11492707 DOI: 10.1080/21505594.2024.2416550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024] Open
Abstract
Candida albicans is an opportunistic yeast capable of causing a wide range of mucosal, cutaneous, and systemic infections. However, therapeutic strategies are limited to a few antifungal agents. Inorganic nanoparticles have been investigated as carrier systems for antifungals as potential new treatments. In this study, we focused on the antifungal activity of gold nanorods, a specific rod-shaped gold nanoparticle, produced by green synthesis using resveratrol as a metal-reducing agent. The synthesis method resulted in stable control nanoparticles (AuNp) and resveratrol-coated gold nanoparticles (AuNpRSV) with medium sizes of 32.4 × 15.9 nm for AuNp, and 33.5 × 15.3 nm for AuNpRSV. Both AuNp and AuNpRSV inhibited the C. albicans grown at 2.46 µg/mL, exhibited fungicidal effects at 4.92 µg/mL, and significantly decreased filamentation, biofilm viability, reactive oxygen species production and ergosterol levels of C. albicans. In addition, exposure to AuNpRSV reduced the ability of C. albicans to grow in the presence of cell membrane stressors. Transmission electron microscopy revealed enlargement of the cell wall and retraction of the cell membrane after treatment with AuNp and AuNpRSV. Promisingly, in vivo toxicity analysis demonstrated that both nanoparticles maintained the full viability of Galleria mellonella larvae at 49.20 µg/mL. In conclusion, both gold nanoparticles exhibited antifungal activity; however, these effects were enhanced by AuNpRSV. Altogether, AuNps and AuNpRSVs are potential antifungal agents for the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca Do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Newton Soares da Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Daniel Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| |
Collapse
|
3
|
Zhang J, Yao J, Ma C, Liu H, Yang W, Lei Z. Magnolol from Magnolia officinalis inhibits Neopestalotiopsis ellipsospora by damaging the cell membrane. Sci Rep 2024; 14:24934. [PMID: 39438616 PMCID: PMC11496689 DOI: 10.1038/s41598-024-75310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Tea gray blight disease is a significant threat to the tea industry. In this study, a biological activity approach was utilized to investigate the efficacy of green fungicides from Magnolia officinalis stem bark against Neopestalotiopsis ellipsospora. The active compounds were isolated and purified, and their structures were elucidated. In vitro and in vivo activity screenings revealed that the n-hexane extract, which contained magnolol and honokiol, exhibited strong activity against N. ellipsospora, showing complete inhibition at 100 mg/L. The EC50 values of magnolol and honokiol were 5.11 and 6.09 mg/L, respectively. Mechanistically, magnolol was found to disrupt N. ellipsospora invasion by damaging the cell membrane, increasing permeability, and causing leakage of intracellular substances. Transcriptome analysis revealed that magnolol treatment downregulates membrane-related genes and leads to the enrichment of lipid metabolism pathway genes. This study revealed that magnolol inhibits N. ellipsospora growth by affecting lipid metabolism and compromising cell membrane integrity.
Collapse
Affiliation(s)
- Jiying Zhang
- College of Tea Science, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jianmei Yao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Chiyu Ma
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Huifang Liu
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Wen Yang
- College of Tea Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Zhiwei Lei
- College of Tea Science, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
4
|
Liu C, Shao J. Therapy of traditional Chinese medicine in Candida spp. and Candida associated infections: A comprehensive review. Fitoterapia 2024; 177:106139. [PMID: 39047847 DOI: 10.1016/j.fitote.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Candida spp. are commonly a group of opportunistic dimorphic fungi, frequently causing diverse fungal infections in immunocompromised or immunosuppressant patients from mucosal disturbs (oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated infections (systemic candidiasis) with high morbidity and mortality. Importantly, several Candida species can be isolated from diseased individuals with digestive, neuropathic, respiratory, metabolic and autoimmune diseases. Due to increased resistance to conventional antifungal agents, the arsenal for antifungal purpose is in urgent need. Traditional Chinese Medicines (TCMs) are a huge treasury that can be used as promising candidates for antimycotic applications. In this review, we make a short survey of microbiological (morphology and virulence) and pathological (candidiasis and Candida related infections) features of and host immune response (innate and adaptive immunity) to Candida spp.. Based on the chemical structures and well-studied antifungal mechanisms, the monomers, extracts, decoctions, essential oils and other preparations of TCMs that are reported to have fair antifungal activities or immunomodulatory effects for anticandidal purpose are comprehensively reviewed. We also emphasize the importance of combination and drug pair of TCMs as useful anticandidal strategies, as well as network pharmacology and molecular docking as beneficial complements to current experimental approaches. This review construct a therapeutic module that can be helpful to guide in-future experimental and preclinical studies in the combat against fungal threats aroused by C. albicans and non-albicans Candida species.
Collapse
Affiliation(s)
- Chengcheng Liu
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China
| | - Jing Shao
- Laboratory of Anti-infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China; Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei 230012, Anhui, PR China.
| |
Collapse
|
5
|
Li X, Yuan Z, Wang Y, Wang W, Shi J. Recent advances of honokiol:pharmacological activities, manmade derivatives and structure-activity relationship. Eur J Med Chem 2024; 272:116471. [PMID: 38704945 DOI: 10.1016/j.ejmech.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.
Collapse
Affiliation(s)
- Xiuxia Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan Province, China
| | - Wenjing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
6
|
Patil SB, Basrani ST, Chougule SA, Gavandi TC, Karuppayil SM, Jadhav AK. Butyl isothiocyanate exhibits antifungal and anti-biofilm activity against Candida albicans by targeting cell membrane integrity, cell cycle progression and oxidative stress. Arch Microbiol 2024; 206:251. [PMID: 38727840 DOI: 10.1007/s00203-024-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| |
Collapse
|
7
|
Chen C, Xie Z, Cong L, Mao S, Wang L, Wu Y, Zhang Y, Zhou Q, Ahmad A, Chang W, Zhu Z, Li Y. Antifungal activity of a maleimide derivative: disruption of cell membranes and interference with iron ion homoeostasis. Mycology 2024; 16:382-401. [PMID: 40083407 PMCID: PMC11899228 DOI: 10.1080/21501203.2024.2330403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/06/2024] [Indexed: 03/16/2025] Open
Abstract
Fungal infections caused by Candida albicans have posed a persistent threat to human health. Existing clinical antifungal drugs are constrained by issues such as drug resistance and side effects. Compounds containing maleimide rings have been verified to possess antifungal properties, although the specific molecular mechanisms by which they exert this activity have yet to be fully understood. A total of 40 compounds containing maleimide rings were synthesised in the present study, and 12 derivatives that possessed antifungal properties were subsequently identified. The maleimide compound 5 (MPD) with the most potent activity demonstrated fungicidal action at a concentration that was twice as potent as the minimal inhibitory concentration and effectively prevented the formation of biofilms. Furthermore, the mechanistic studies revealed that MPD interfered with iron ion homoeostasis by reducing intracellular iron concentration inside cells, which led to the inhibition of ergosterol biosynthesis and increased cell membrane permeability, resulting in the leakage of intracellular trehalose. In addition, MPD was observed to perturb cell wall biosynthesis by reducing the activity of chitin synthase. Moreover, MPD was found to demonstrate therapeutical efficacy in vivo when assessed using a Caenorhabditis elegans-C. albicans infection model.
Collapse
Affiliation(s)
- Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Department of Clinical Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, China
| | - Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liying Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yalun Wu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Qing Zhou
- Department of Periodontology, Xuchang Central Hospital, Xuchang, China
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Duarte ABS, Perez-Castillo Y, da Nóbrega Alves D, de Castro RD, de Souza RL, de Sousa DP, Oliveira EE. Antifungal activity against Candida albicans of methyl 3,5-dinitrobenzoate loaded nanoemulsion. Braz J Microbiol 2024; 55:25-39. [PMID: 38135805 PMCID: PMC10920570 DOI: 10.1007/s42770-023-01214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to evaluate the antifungal activity of free methyl 3,5 dinitrobenzoate (MDNB) and its nanoemulsion (MDNB-NE) against strains of Candida albicans. Additionally, a molecular modeling study was also carried out to propose the mechanism of action and toxicity of MDNB. These results demonstrated the MDNB-NE presented a droplet size of 181.16 ± 3.20 nm and polydispersity index of 0.30 ± 0.03. MDNB and MDNB-NE inhibited the growth of all strains with minimum inhibitory concentrations of 0.27-1.10 mM. The biological results corroborated the molecular model, which pointed to a multi-target antifungal mechanism of action for MDNB in C. albicans. The study could serve as a basis for further research involving compounds with nitro groups with antifungal.
Collapse
Affiliation(s)
- Allana Brunna Sucupira Duarte
- Post Graduation Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Yunierkis Perez-Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
| | - Danielle da Nóbrega Alves
- Laboratory of Experimental Pharmacology and Cell Culture, Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Dias de Castro
- Laboratory of Experimental Pharmacology and Cell Culture, Department of Clinical and Social Dentistry, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
9
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé-Patiño G, Aviña-Padilla K, Velasco-Pareja MC, Yasnot MF. Transcriptional Reprogramming of Candida tropicalis in Response to Isoespintanol Treatment. J Fungi (Basel) 2023; 9:1199. [PMID: 38132799 PMCID: PMC10744401 DOI: 10.3390/jof9121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Candida tropicalis, an opportunistic pathogen, ranks among the primary culprits of invasive candidiasis, a condition notorious for its resistance to conventional antifungal drugs. The urgency to combat these drug-resistant infections has spurred the quest for novel therapeutic compounds, with a particular focus on those of natural origin. In this study, we set out to evaluate the impact of isoespintanol (ISO), a monoterpene derived from Oxandra xylopioides, on the transcriptome of C. tropicalis. Leveraging transcriptomics, our research aimed to unravel the intricate transcriptional changes induced by ISO within this pathogen. Our differential gene expression analysis unveiled 186 differentially expressed genes (DEGs) in response to ISO, with a striking 85% of these genes experiencing upregulation. These findings shed light on the multifaceted nature of ISO's influence on C. tropicalis, spanning a spectrum of physiological, structural, and metabolic adaptations. The upregulated DEGs predominantly pertained to crucial processes, including ergosterol biosynthesis, protein folding, response to DNA damage, cell wall integrity, mitochondrial activity modulation, and cellular responses to organic compounds. Simultaneously, 27 genes were observed to be repressed, affecting functions such as cytoplasmic translation, DNA damage checkpoints, membrane proteins, and metabolic pathways like trans-methylation, trans-sulfuration, and trans-propylamine. These results underscore the complexity of ISO's antifungal mechanism, suggesting that it targets multiple vital pathways within C. tropicalis. Such complexity potentially reduces the likelihood of the pathogen developing rapid resistance to ISO, making it an attractive candidate for further exploration as a therapeutic agent. In conclusion, our study provides a comprehensive overview of the transcriptional responses of C. tropicalis to ISO exposure. The identified molecular targets and pathways offer promising avenues for future research and the development of innovative antifungal therapies to combat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Gilmar Santafé-Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Katia Aviña-Padilla
- Center for Research and Advanced Studies of the I.P.N. Unit Irapuato, Irapuato 36821, Mexico;
| | - María Camila Velasco-Pareja
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| | - María Fernanda Yasnot
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| |
Collapse
|
10
|
Acuna E, Ndlovu E, Molaeitabari A, Shahina Z, Dahms TES. Carvacrol-Induced Vacuole Dysfunction and Morphological Consequences in Nakaseomyces glabratus and Candida albicans. Microorganisms 2023; 11:2915. [PMID: 38138059 PMCID: PMC10745442 DOI: 10.3390/microorganisms11122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
With the prevalence of systemic fungal infections caused by Candida albicans and non-albicans species and their resistance to classical antifungals, there is an urgent need to explore alternatives. Herein, we evaluate the impact of the monoterpene carvacrol, a major component of oregano and thyme oils, on clinical and laboratory strains of C. albicans and Nakaseomyces glabratus. Carvacrol induces a wide range of antifungal effects, including the inhibition of growth and hyphal and biofilm formation. Using biochemical and microscopic approaches, we elucidate carvacrol-induced hyphal inhibition. The significantly reduced survival rates following exposure to carvacrol were accompanied by dose-dependent vacuolar acidification, disrupted membrane integrity, and aberrant morphology. Germ tube assays, used to elucidate the relationship between vacuolar dysfunction and hyphal inhibition, showed that carvacrol significantly reduced hyphal formation, which was accompanied by a defective C. albicans morphology. Thus, we show a link between vacuolar acidification/disrupted vacuole membrane integrity and compromised candidal morphology/morphogenesis, demonstrating that carvacrol exerts its anti-hyphal activity by altering vacuole integrity.
Collapse
Affiliation(s)
| | | | | | - Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 1P4, Canada; (E.A.)
| | | |
Collapse
|
11
|
Sasidharan S, Nishanth KS, Nair HJ. A semi purified hydroalcoholic fraction from Caesalpinia bonduc seeds causes ergosterol biosynthesis inhibition in Candida albicans resulting in cell membrane damage. Front Pharmacol 2023; 14:1189241. [PMID: 37377930 PMCID: PMC10291067 DOI: 10.3389/fphar.2023.1189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Candida species are currently developing resistance to prevailing commercially available drugs, which raises an instantaneous need to discover novel antifungals. To cope with this shocking situation, phytochemicals are the richest, safest, and most potent source of excellent antimicrobials with broad-spectrum activity. The aim of the current study is to explore the anticandidal potential of the various fractions purified from the hydroalcoholic extract of C. bonduc seed. Out of five fractions purified from the hydroalcoholic extract, fraction 3 (Fr. 3) recorded the best activity against C. albicans (8 μg/mL) and thus this species was chosen for further mechanism of action studies. The phytochemical examination reveals that Fr. 3 was found to contain steroids and triterpenoids. This was further supported by LC-QTOF-MS and GCMS analyses. Our findings show that Fr. 3 targets the ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and downregulating expression of its related gene ERG11. Molecular docking outcomes disclosed favorable structural dynamics of the compounds, implying that the compounds present in Fr. 3 would be able to successfully bind to the lanosterol 14-α demethylase, as evidenced by the docked compounds' strong interaction with the target enzyme's amino acid residues. Considering virulence factors, the Fr. 3 recorded significant antibiofilm activity as well as germ-tube reduction potential. Furthermore, Fr. 3 enhances the production of intracellular reactive oxygen species (ROS). This suggests that the antifungal activity of Fr. 3 was associated with membrane damage and the induction of ROS production, resulting in cell death. Fluorescence microscopic analysis of PI stained Candida further showed changes in the plasma membrane permeability, which causes severe loss of intracellular material and osmotic balance. This was demonstrated by the potassium ion leakage and release of genetic materials. Finally, the erythrocyte lysis assay confirmed the low cytotoxicity of Fr. 3. Both in silico and in vitro results suggest that Fr. 3 has the potential to propel forward novel antifungal drug discovery programmes.
Collapse
Affiliation(s)
- Shan Sasidharan
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Kumar S. Nishanth
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Hareendran. J Nair
- 2Department of R&D, Pankajakasthuri Herbals India Pvt Ltd., Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| |
Collapse
|
12
|
Candida albicans Reactive Oxygen Species (ROS)-Dependent Lethality and ROS-Independent Hyphal and Biofilm Inhibition by Eugenol and Citral. Microbiol Spectr 2022; 10:e0318322. [PMID: 36394350 PMCID: PMC9769929 DOI: 10.1128/spectrum.03183-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is part of the normal human flora but is most frequently isolated as the causative opportunistic pathogen of candidiasis. Plant-based essential oils and their components have been extensively studied as antimicrobials, but their antimicrobial impacts are poorly understood. Phenylpropenoids and monoterpenes, for example, eugenol from clove and citral from lemon grass, are potent antifungals against a wide range of pathogens. We report the cellular response of C. albicans to eugenol and citral, alone and combined, using biochemical and microscopic assays. The MICs of eugenol and citral were 1,000 and 256 μg/mL, respectively, with the two exhibiting additive effects based on a fractional inhibitory concentration index of 0.83 ± 0.14. High concentrations of eugenol caused membrane damage, oxidative stress, vacuole segregation, microtubule dysfunction and cell cycle arrest at the G1/S phase, and while citral had similar impacts, they were reactive oxygen species (ROS) independent. At sublethal concentrations (1/2 to 1/4 MIC), both oils disrupted microtubules and hyphal and biofilm formation in an ROS-independent manner. While both compounds disrupt the cell membrane, eugenol had a greater impact on membrane dysfunction. This study shows that eugenol and citral can induce vacuole and microtubule dysfunction, along with the inhibition of hyphal and biofilm formation. IMPORTANCE Candida albicans is a normal resident on and in the human body that can cause relatively benign infections. However, when our immune system is severely compromised (e.g., cancer chemotherapy patients) or underdeveloped (e.g., newborns), this fungus can become a deadly pathogen, infecting the bloodstream and organs. Since there are only a few effective antifungal agents that can be used to combat fungal infections, these fungi have been exposed to them over and over again, allowing the fungi to develop resistance. Instead of developing antifungal agents that kill the fungi, some of which have undesirable side effects on the human host, researchers have proposed to target the fungal traits that make the fungus more virulent. Here, we show how two components of plant-based essential oils, eugenol and citral, are effective inhibitors of C. albicans virulence traits.
Collapse
|
13
|
Li Y, Liang C, Zhou X. The application prospects of honokiol in dermatology. Dermatol Ther 2022; 35:e15658. [PMID: 35726011 PMCID: PMC9541939 DOI: 10.1111/dth.15658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
Honokiol is one of the natural extracts of Magnolia officinalis. It is a small molecule, lipophilic compound with extensive biological effects. It has been used in the treatment of multisystem diseases, including digestive diseases, endocrine diseases, nervous system diseases, and various tumors. This paper reviews the biological effects of honokiol on the treatment of skin diseases in recent years, including anti-microbial, anti-oxidant, anti-inflammatory, anti-tumor, anti-fibrosis, anti-allergy, photo-protection, and immunomodulation. Most current researches are focused on the effects of anti-melanoma and photo-protection. Therefore, we summarized the specific mechanisms about these two effects. On the other side of treating skin diseases, the advantages of topical drugs cannot be replaced. As a small molecule fat-soluble compound, honokiol is suitable for external use. We reviewed the advantages and disadvantages of the topical mixed cream and various improved methods. These improvements include physical and chemical penetration enhancers, drug carriers, and chemical derivatives. In conclusion, honokiol has a wide range of effects, and its topical preparation provides a safe and effective way for treating skin diseases.
Collapse
Affiliation(s)
- Yao Li
- Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Chenglin Liang
- Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| | - Xiyuan Zhou
- Institute of Dermatology and Venereology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|